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ABSTRACT
A lease is a token which grants its owner exclusive access to
a resource for a defined span of time. In order to be able to
tolerate failures, leases need to be coordinated by distributed
processes. We present FaTLease, an algorithm for fault-
tolerant lease negotiation in distributed systems. It is built
on the Paxos algorithm for distributed consensus, but avoids
Paxos’ main performance bottleneck of requiring persistent
state. This property makes our algorithm particularly useful
for applications that can not dispense any disk bandwidth.
Our experiments show that FaTLease scales up to tens of
thousands of concurrent leases and can negotiate thousands
of leases per second in both LAN and WAN environments.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems

General Terms
Algorithms, Theory

1. INTRODUCTION
Many replication systems are based on a primary/second-

ary scheme where a designated primary replica acts as a se-
quencer of operations and is thereby responsible for the con-
sistency of replicated data [5, 8, 15]. An example of this de-
sign is master-slave database replication where a statically-
configured host assumes the task of enforcing a sequential
order on operations.

The basic primary/secondary approach can be made fault-
tolerant by adding a mechanism to hand over the sequencer
role of the primary replica in case of a failure. Leases [6,
11] can be used for this task by designating their exclusive
owner as the primary replica and by relying on their built-in
timeout as a revocation mechanism in case of failures.
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In general, a lease is issued to grant a designated host
exclusive access to a resource for a limited period of time.
This implies that the issuer must make sure that at any
point in time, at most one valid lease exists for a resource.
When leases are coordinated in a distributed manner, lease
exclusiveness becomes a distributed consensus problem [4].

Paxos is an algorithm that solves distributed consensus
while tolerating host failures, network partitions, and mes-
sage loss. Paxos uses stable storage to ensure correctness
after a host has recovered from a crash. Issuing a lease cor-
responds to a round of Paxos, which requires two writes to
stable storage. This means that the maximum number of
leases the system can concurrently handle is bound by the
local disk bandwidth. In addition, the delay caused by the
disk writes reduces the total response time of the system.

In this paper, we present the FaTLease algorithm, which
tightly integrates leases with Paxos. By taking advantage
of the timeouts that are associated with leases, it removes
the necessity for stable storage [1] while maintaining the
properties of Paxos.

We have implemented FaTLease as part of XtreemFS [7],
a replicated object-based file system. XtreemFS employs a
primary/secondary replication scheme using leases to elect
one primary per file. This implies that file servers (object
storage devices) must be able to handle large amounts of
leases concurrently, since each open file is associated with
one lease. Using regular Paxos would severely reduce the
performance of read and write operations, as it requires two
disk writes per lease negotiation.

Our paper is structured as follows. We first review re-
lated work (Sec. 2) and give an introduction to the Paxos
algorithm (Sec. 3). In Section 4 we describe FaTLease,
including its distributed consensus algorithm and the logic
that extends the consensus algorithm to a distributed lease
negotiation algorithm. In this context, we describe how cor-
rectness is ensured without the need for persistent state. In
Section 5 we investigate how many leases our lease negoti-
ation algorithm can handle in local and wide area networks
and compare the results to regular Paxos. An additional
set of experiments compares the disk bandwidth required
by FaTLease and regular Paxos and demonstrates the ef-
fect a write-intensive application has on the performance of
both algorithms.



2. RELATED WORK
The Paxos algorithm provides distributed consensus in un-

reliable environments. The algorithm is described in [9, 10]
and thoroughly discussed in [1]. The general approach for
adding a namespace to Paxos in order to run multiple in-
stances of a distributed consensus has been sketched in [13]
as Multipaxos. In [11] Lampson outlines how to implement
highly-available services using Paxos and leases.

Results from [8] indicate that primary/secondary replica-
tion performs better than quorum-based approaches such as
replicated state machines with Paxos. In [11], Lampson sec-
onds this argument and suggests that Paxos should only be
used to negotiate leases, while other update dissemination
mechanisms should be used for actual data replication.

An alternative approach to elect a primary is to use a
centralized lock service. In this approach, clients acquire
locks from a central server that ensures exclusive access to
a resource. Locks associated with timeouts are essentially
equivalent to leases. In contrast, FaTLease does not have a
centralized server, but negotiates the lease among all partic-
ipating hosts. Numerous lock services have been developed,
here we present a selection of recent implementations that
rely on Paxos.

Chubby [2, 3] is a fault-tolerant lock service. It has been
designed to run on a small number of hosts, where each host
holds a replica of a simple database. Any access to Chubby
goes through a designated primary, which is elected with
Paxos. The primary replicates all data modifications to the
replicas also by using Paxos. Locks can be requested at the
primary, which acts as a centralized lock service. Informa-
tion on locks is stored in the replicated database so that an-
other replica can take the role of the primary in case of fail-
ures. Basically, this means that each lock operation (acquire
and release) requires a modification of the database, which
results in a round of Paxos. To optimize throughput, multi-
ple operations executed on the primary are replicated using
a single round of Paxos. As stated by the authors, Chubby
was designed as a low-volume file system with coarse-grained
locks. Scalability is achieved by creating an arbitrary num-
ber of independent Chubby installations. In the Google File
System [5], Chubby is used to elect primaries which ensure
data consistency.

The Boxwood [12] file system implements a centralized
locking service with master and slaves. It uses Paxos to
replicate the state of the leases issued to clients. Similarly,
the Frangipani file system [14] distributes the responsibility
of the locks among all available lock servers. Paxos is used
to replicate the locks and the partitioning information. This
allows the other lock servers to take over the partition of a
failed server.

3. PAXOS
This section gives a brief overview of the Paxos algorithm.

We consider this section necessary, as FaTLease is tightly
interwoven with Paxos. Detailed descriptions of Paxos are
given in [9, 10].

The Paxos algorithm allows multiple hosts to reach con-
sensus on a single value. By relying on majority decisions,
Paxos is able to tolerate message loss, network splits and
host failures as long as responses from a majority of hosts are
available. These fault tolerance properties combined with
the need for only two communication round-trips to reach

Figure 1: Example of a single round of Paxos with
three acceptors (A,B,C). The two phases of Paxos
are marked. The ‘x’ indicates message loss.

consensus have made Paxos a widely-adopted solution to the
problem of distributed consensus in system development.

With Paxos, a host may adopt two roles: the proposer and
the acceptor role. Proposers initiate the consensus process
by sending proposals to acceptors. Each proposal consists of
the proposed value itself and a globally unique ballot number
that allows acceptors to chose one proposal over the other.
Acceptors arbitrate concurrent proposals and decide on at
most one of the proposals that may have been concurrently
submitted. Subsequent reruns of the consensus process al-
ways result in the chosen value and can be used to learn
about the result of the consensus.

For each submitted proposal, the consensus process con-
sists of two phases of message exchange from the proposer
to the acceptors (see Fig. 1). In the prepare phase, accep-
tors guarantee they will not accept any other proposal with
a lower ballot number. In the accept phase, acceptors com-
mit to one proposal and accept it. As soon as one proposal
has been received and stored by a majority of the acceptors,
the proposal is the consensus and can be disseminated to all
participants.

To ensure correctness in face of crash-recovery of accep-
tors, Paxos requires that acceptors keep their state in stable
storage. This implies that for each prepare and accept mes-
sage, the acceptor has to update its state before responding.
For a single round of Paxos, this leads to at least two writes
to stable storage on each acceptor.

4. DISTRIBUTED LEASE NEGOTIATION
The goal of FaTLease is to provide a method to issue

leases in a distributed and fault-tolerant manner. In order
to guarantee exclusive access to a resource, the algorithm
must preserve the lease invariant. That is, all valid leases
for a single resource must have the same lease owner.

A local instance of the algorithm runs on each host in the
system. It provides operations to acquire, renew or invali-
date a lease. At its core, the algorithm is based on a variant
of Multipaxos, which offers Paxos instances as a means of
reaching consensus on a particular lease (see Fig. 2), and
which separates consecutive lease negotiation rounds. As
part of the Multipaxos variant, each host runs a Paxos pro-
poser and a Paxos acceptor. The lease negotiation logic
guides Multipaxos in its creation of Paxos instances, so that
the lease invariant is never violated. Lease negotiation op-
erates in cells, which are namespaces that separate the lease
negotiation process between resources.

This section is organized as follows. We first describe the
system model, introduce basic definitions, and explain how



Figure 2: Lease management creates Paxos in-
stances inside Multipaxos cells to negotiate single
leases.

the FaTLease algorithm acquires, renews, and invalidates
leases. Then we discuss how the algorithm exploits an in-
herent notion of timeouts to avoid the persistent state that
Paxos would normally require.

4.1 System Model and Definitions
We assume networks to be unreliable in the sense that

messages can be lost, delayed or duplicated but message
content is not altered. All system components adopt a crash-
recovery failure model: a host may lose its non-persistent
state when crashing, but can re-join the system afterwards.

We expect host clocks to be loosely synchronized, i.e. the
difference between any two clocks does not exceed a certain
maximum. Moreover, we assume that all components can
be trusted, i.e. no byzantine behavior is considered.

Our protocol runs on a set of hosts H = {h1, . . . , hn}. We
formally define a lease λ as consisting of a lease owner h ∈ H
and an absolute time stamp t ∈ N. λ = (h, t) expresses that
h holds the lease until the point in time t.

Each host hk ∈ H holds the state of the latest locally-
known Paxos instance pk = (λlrn, λacc, b, i). λlrn, λacc ∈
(H×N)∪{⊥} denote the lease eventually agreed on, and the
last lease locally accepted, respectively, where ⊥ expresses
that no lease information is known. b ∈ N denotes the largest
accepted ballot number, and i ∈ N denotes the number of
the instance.

Furthermore, each host hk ∈ H is associated with a local
clock ck. ck(t) denotes the time returned by ck at time t.
We rely on the assumption that clocks are loosely synchro-
nized, i.e. that an upper bound dmax exists, with dmax ≥
max
t,j,k

{|cj(t) − ck(t)|}.
We call a lease λ = (hk, t) valid as long it has not

yet timed out from the lease owner’s point of view, i.e.
ck(tnow) < t if tnow denotes the current point in time.

For all leases acquired by any host, we restrict the relative
period of time in which the lease is valid to v. Our protocol
requires that v > dmax.

4.2 Reaching Consensus on Leases
We formulate the lease negotiation problem as a distribu-

ted consensus problem for a lease λ. With the aim of reach-
ing consensus on λ, a host starts the consensus process send-
ing λ as a proposal to the acceptors of all hosts through its
local proposer. The Paxos algorithm chooses at most one
proposal as the consensus, which becomes the current valid
lease.

Consecutive leases for the same resource are each nego-

tiated in a separate Paxos instance that is identified by a
unique number i. We implemented Multipaxos [13] to han-
dle multiple Paxos instances. Multipaxos only separates the
consensus of single instances, but does not further restrict
them. In the context of lease negotiation, the lease negoti-
ation logic that uses Multipaxos must control the creation
of Paxos instances in such a way that the lease invariant is
never violated. This means that the negotiation process for
a new lease must not be started before the previous lease
has timed out, i.e. the instance i + 1 may only be created
when the instance i has timed out. In order to allow gap-free
lease renewals, we will relax this requirement later so that
two valid leases can exist when they have the same lease
owner.

Paxos instances are automatically started as soon as an ac-
ceptor receives a Paxos message for that particular instance.
Once consensus has been reached, the proposer will inform
all acceptors of the outcome by sending them a learn mes-
sage. Upon receiving this learn message, acceptors consider
the instance to be complete. When the lease of an instance
has timed out, the instance is considered to be outdated and
the next instance can be started for a new lease.

In an unreliable environment, a host may miss single Paxos
messages, which results in incomplete instances. A host may
even completely miss the existence of instances. The former
case is handled by re-running Paxos for that instance, the
latter requires a mechanism for hosts to catch up to the cur-
rent instance. We introduce a new message for this purpose:
when a host that has been left behind sends messages in an
instance that has already timed out, it will receive outdated
responses from all acceptors that know of a newer instance.
If a majority of acceptors respond, there is at least one ac-
ceptor that knows the current instance. The proposer simply
takes the most recent instance number from the responses
and then re-submits its proposition in the current instance.

We will now present the pseudo-code for the Multipaxos
algorithm, with an extension that considers timed-out in-
stances. The code is split into the proposer and the accep-
tor parts. The INITIATE_CONSENSUS procedure implements
a proposer and is executed to acquire a lease. The event
handlers PREPARE, ACCEPT and LEARN implement the accep-
tor role. We ommitted error handling code to enhance read-
ability.

PROCEDURE INITIATE_CONSENSUS(λ, i)
-- prepare phase (step 1, Fig. 1)

-- generate a unique ballot number

b ← GENERATE_UNIQUE_BALLOT()
5 SEND PREPARE(b, i) TO H

P ← RECEIVE FROM a majority of H
IF ∃p ∈ P : p is OUTDATED THEN

-- Multipaxos message to find current instance

pl ← (⊥, p.λacc, p.b, p.i)
10 INITIATE_CONSENSUS(λ, p.i)

ELSE IF ∃p ∈ P : p is NACK THEN
-- another proposal had a higher ballot number

wait some time
INITIATE_CONSENSUS(λ, i)

15 ELSE IF |{p ∈ P | p is ACK}| ≥ � |H|
2

+ 1� THEN
-- majority agreed (step 3, Fig. 1)

Pacc ← {p ∈ P | p is ACK ∧ p.λacc 
=⊥}
IF Pacc 
= ∅ THEN

-- an acceptor demands that some prior value is used

20 Pmax ← {p ∈ Pacc | p.b = max
p∈Pacc

{p.b}}
b ← p.b, p ∈ Pmax



λ ← p.λacc, p ∈ Pmax

END IF
-- accept phase (step 4, Fig. 1)

25 SEND ACCEPT(λ, i, b) TO H
A ← RECEIVE FROM a majority of H

IF |{a ∈ A | a is ACK}| ≥ � |H|
2

+ 1� THEN
-- majority accepted (step 6, Fig. 1)

pl ← (λ, λ, b, i)
30 -- send outcome to all participants (step 7, Fig. 1)

SEND LEARN(pl) TO H
ELSE

-- restart with prepare phase

wait some time
35 INITIATE_CONSENSUS(λ, i)

END IF
END IF

On receiving prepare and accept messages, acceptors ini-
tially compare their local instance number with the one sent
by the proposer. If the proposer is not up-to-date, i.e. the
proposer sent a smaller instance number than the greatest
instance number known to the acceptor, an textitoutdated
message is sent; if a proposer uses a newer instance than
the one known to the acceptor, the acceptor will discard its
old state and start a new instance. The latter situation can
happen when acceptors miss messages or even full instances.
In most cases, both proposer and acceptor know the same
instance and plain Paxos can be executed.

To speed up the algorithm, we use nack messages in order
to indicate that an acceptor knows of a more recent proposal.
In plain Paxos as described in Sec. 3, acceptors simply fail
to respond if they know a newer proposal, which may cause a
communication timeout on the proposer side if not enough
acceptors respond. Sending nack messages instead is an
optimization, which does not affect the correctness of Paxos.

UPON PREPARE(b, i)
-- step 2 in Fig. 1

IF i < pl.i ∧ pl.λlrn = ⊥ THEN
-- proposer has missed some instance(s)

5 SEND OUTDATED(⊥, pl.λacc, pl.b, pl.i)
ELSE
IF i > pl.i THEN

-- local acceptor has missed some instance(s)

pl ← (⊥, ⊥, b, i)
10 SEND ACK(⊥, ⊥, b, i)

ELSE IF b < pl.b THEN
-- acceptor has seen a newer proposal

SEND NACK(⊥, ⊥, pl.b, i)
ELSE

15 -- acceptor agrees to the proposal

pl.b ← b
IF pl.λacc 
= ⊥ THEN

-- acceptor forces proposer to use prior value

SEND ACK(⊥, pl.λacc, pl.b, i)
20 ELSE

SEND ACK(⊥, ⊥, b, i)
END IF

END IF
END IF

25

UPON ACCEPT(λ, i, b)
-- step 5 in Fig. 1

IF i < pl.i THEN
-- acceptor does not vote for values in outdated instances

30 SEND NACK
ELSE IF i > pl.i THEN

-- acceptor has missed instance and votes for value

pl ← (⊥, λ, b, i)

(a)

(b)

Figure 3: Lease timeouts and effect of loosely syn-
chronized clocks and lease renewal. The safety pe-
riod is marked with dashes.

SEND ACK
35 ELSE IF b ≥ pl.b THEN

-- acceptor votes for proposal

pl.λacc ← λ
SEND ACK

ELSE
40 -- acceptor has seen newer proposal and cannot accept

SEND NACK
END IF

UPON LEARN(λ, i)
45 IF i > pl.i THEN

-- instance is unknown and needs to be created

pl ← (λ, ⊥, 0, i)
ELSE IF i = pl.i THEN

-- instance is known:

50 -- the consensus outcome (lease) is stored in the instance

pl.λlrn ← λ
END IF

4.3 Lease Operations
A crucial design goal of FaTLease is to minimize the

amount of messages that need to be exchanged in order to
determine the current lease owner. A host therefore ought
to be able to decide locally on the existence of a valid lease.
We set the stage for this by disseminating Paxos learn mes-
sages that convey the latest lease which consensus has been
reached on.

An issue that still remains is clock asynchrony. We cannot
assume that the clocks of the participating hosts are closely
synchronized. Since we have defined lease validity from the
perspective of the lease owner’s clock, we need to take care
that no violation of the lease invariant can occur due to
skews in the clocks of other hosts.

FaTLease relies on the presence of loosely-synchronized
host clocks. The algorithm assumes that some external pro-
tocol (like the Network Time Protocol) puts an upper limit
on the clock drift between hosts. Incorporating a safety pe-
riod dmax greater than the maximum clock drift guarantees
that hosts can decide locally whether a lease has timed out,
even when timeouts are interpreted based on local clocks
(see Fig. 3a).

Acquiring Leases
Leases are acquired with the GET_LEASE procedure, which
implements the lease logic by controlling the creation of new
Paxos instances. The GET_LEASE procedure first queries the
local Multipaxos acceptor with CHECK_LOCAL_STATE to find
out what the locally known state of the lease for the resource
is. Depending on the information returned, the procedure



might start the consensus process or continue with the in-
formation locally available.

Essentially, CHECK_LOCAL_STATE distinguishes between the
cases that no lease is known, a valid lease is known, an out-
dated lease is known, and a potentially valid lease is known.

In the first case, no learn message has been received in
the latest known instance, which causes GET_LEASE to pro-
pose its own lease in this instance. Which of the remaining
three cases comes into play depends on the lease timeout,
the local clock and the question whether the lease is held
locally. In each of the cases, the current time on the local
clock is compared to the lease timeout. If the current time
is smaller than the lease timeout in case the local host is
the lease owner, or the timeout decreased by dmax in case
the local host is not the lease owner, the lease must be valid
and can hence be immediately returned by GET_LEASE. Oth-
erwise, if the current time is greater than the lease timeout
and the lease timeout increased by dmax, respectively, the
last known lease is outdated, and a proposal can be started
in the following instance. In any other case, the lease is in
the safety period [t − dmax, t + dmax] and potentially valid,
which means that the host has to wait until the lease has
certainly timed out before proposing in a new instance.

In case the host has missed Paxos instances, invoking INI-

TIATE_CONSENSUS will help it to catch up to the latest in-
stance in the system. With each invocation, the result may
be an outdated message, in case a newer instance exists that
has already been completed (Fig. 1, learn message) and re-
sulted in a valid lease. By repeating proposition attempts
with increasing version numbers, the process will either end
up in an instance with a valid lease and learn about it, or join
an incomplete instance and participate in the arbitration of
the next lease with its own proposal.

PROCEDURE GET_LEASE(): H × N

WHILE true DO
λ ← CHECK_LOCAL_STATE()
IF λ = none THEN

5 -- the local information is outdated

-- next instance is used

INITIATE_CONSENSUS( (hl, cl(tnow) + v), pl.i + 1)
ELSE IF λ = locally_unknown THEN

-- no information on current lease and instance

10 -- can be deduced - the last known instance is used

INITIATE_CONSENSUS( (hl, cl(tnow) + v), pl.i)
ELSE IF λ = wait THEN

-- lease is in safety period

-- wait before starting new instance

15 wait some time
ELSE

-- lease information is available

RETURN λ
END IF

20 DONE

PROCEDURE CHECK_LOCAL_STATE():
(H × N) ∪ {none, locally_unknown, wait}

IF pl.λlrn = ⊥ THEN
25 -- no local information available

RETURN locally_unknown
ELSE IF pl.λlrn.h = hl THEN

-- local host is primary

IF cl(tnow) ≤ pl.λlrn.t THEN
30 -- lease is still valid

RETURN pl.λlrn

ELSE
-- lease is outdated

RETURN none
35 END IF

ELSE
-- remote host is primary

IF cl(tnow) + dmax ≤ pl.λlrn.t THEN
-- lease is valid and not in safety period

40 RETURN pl.λlrn
ELSE IF cl(tnow) − dmax > pl.λlrn.t THEN

-- lease is outdated

RETURN none
ELSE -- lease is in safety period

45 RETURN wait
END IF

END IF

Renewing Leases
With the algorithm as presented, a host that wants to extend
its lease ownership beyond the expiration time of the current
lease would have to try to acquire the next lease after the
current lease has expired. By starting a proposal in instance
n after the lease in instance n−1 has already become invalid,
the lease owner would lose its ownership of the resource at
least until consensus has been reached in n. During this
time, other hosts could also compete for the lease in n and
succeed.

In order to enable safe and gap-less lease renewal, we allow
a lease owner to create a Paxos renew instance n already be-
fore its lease in n−1 has timed out (Fig. 3b). As this causes
two valid leases with overlapping validity time spans to exist,
it is necessary to ensure that the lease owner in n will be the
same as in n − 1, since otherwise, the lease invariant would
be violated. With respect to this, we have to consider the
possibility that hosts which do not own the lease and which
have missed instance n − 1 become aware of the existence
of the renew instance n. Under these circumstances, it is
necessary to keep such hosts from starting concurrent at-
tempts to acquire the lease in the renew instance. If one of
their attempts was successful, the lease invariant could not
be preserved anymore.

We solved the problem by checking the previous instance
before proposing in an incomplete instance. This implies
that in addition to the current instance n (referred to as pl

in the pseudo code), hosts also have to store the previous
instance n − 1. The instance in which a new proposal is
issued may now depend on the result in n − 1. If n is in-
complete, proposals may only be issued in this instance if
the lease in n− 1 is no longer valid. If the lease may still be
valid or n−1 was missed, the proposal must be submitted in
n − 1 instead. Because this distinction of cases would have
made the pseudo-code more complex and difficult to under-
stand, we omitted the concept of renew instances from the
presentation.

Invalidating Leases
When a host does not need a valid lease anymore, it should
be able to invalidate it, so that another host can get a new
lease without waiting for the current one to expire. The
lease owner can invalidate a lease by sending an invalida-
tion message that causes its receivers to proceed to the next
Paxos instance immediately, without waiting for the cur-
rent instance to time out. Receiving an invalidation message
causes a host to set pl to its successor instance, and there-
fore a new Paxos instance will be used on its next attempt
to acquire the lease.



PROCEDURE INVALIDATE()
IF hl = pl.λlrn.h THEN

-- local host is lease owner

-- invalidate the local lease

5 pl ← (⊥, ⊥, 0, i + 1)
-- disseminate invalidation messages

SEND INV(pl.i) TO H \ {hl}
END IF

10 UPON INV(i)
IF i ≥ pl.i THEN

-- current or later lease is invalidated

-- create a new lease in the next instance

pl ← (⊥, ⊥, 0, i + 1)
15 END IF

4.4 Crash Recovery without Persistent State
The important aspect of our algorithm is its ability to

avoid persistent state that Lamport’s original Paxos requires
[10]. In Paxos, a response to a prepare message implies a
guarantee given by the acceptor that it will not respond to
another proposal with a lower ballot number. This guar-
antee must be valid for the lifetime of the entire system.
Therefore, acceptors must persistently store their internal
state (ballot number and accepted value) in order to be able
to recover from a crash. Acceptor state is changed when
responding to either a prepare or an accept message, which
involves two modifications in each round of Paxos. In FaT-
Lease, this refers to all state contained in pl.

A trivial way to avoid persistent state would be to enforce
crash-stop behavior on acceptors. If acceptors did not re-
cover from crashes, the system would hang forever as soon
as the majority of acceptors have crashed. However, we can
take advantage of the fact that our consensus values are
leases, i.e. have a limited lifetime. Since leases that have
timed out are no longer of any use, consensus state becomes
obsolete when the lease has expired. Acceptors can simply
discard such state. Likewise, acceptors do not need to re-
store such state before rejoining the system after a crash.
Since a lease will be regarded as invalid by all hosts after a
period of at most v+dmax has elapsed, waiting for this time
before rejoining the system renders all local state obsolete.
Therefore, hosts wait for v + dmax before rejoining, rather
than relying on persistent state.

With the basic algorithm as described in Sec. 4.2, discard-
ing host state may violate the lease invariant. Since host
clocks are not perfectly synchronized, hosts may dispose of
obsolete state at different points in time. This may lead to
a system configuration where a majority of hosts have al-
ready discarded their state, while a minority still knows the
latest instance n (see Fig. 4a). Under these circumstances,
the majority could successfully negotiate a new lease among
each other in the initial instance 1. The minority might
still know the formerly latest instance n and could therefore
issue proposals in instance n + 1 (see Fig. 4b). Since FaT-
Lease as described in Sec. 4.2 will always accept proposals
in higher instances than locally known, such proposals may
be successful. This might lead to an illegal overlap in the
validity time periods of instances 1 and n + 1.

We augment the algorithm such that an acceptor always
checks its local state for a non-outdated instance with a
lower instance number. If such an instance exists, the ac-
ceptor will reject the proposal and include the instance num-
ber of the valid lease in its response (see Fig. 4c). When a

Figure 4: State is discarded asynchronously. This
can lead to a majority of hosts (encircled) with
empty state and a minority still having the old state
(a). (b) illustrates concurrent proposals by hosts
from both groups. In (c) instance 1 wins, in (d)
instance n + 1 wins.

majority of acceptors answers with a reject message, the
proposer can safely discard its local state and restart with
the instance number received from the acceptors. Receiving
reject messages from a majority indicates that this majority
has already discarded its old state and restarted with in-
stance 1. In the case where a majority has already accepted
prepare messages in instance n + 1, the hosts will send out-
dated messages for proposals in any instance with a lower
instance number (see Fig. 4d). The proposer will catch up
with the current instance, as described in Sec. 4.2, INITI-
ATE_CONSENSUS, lines 7-9. Both cases ensure that the lease
invariant cannot be violated.

5. EVALUATION
We first demonstrate the scalability of the FaTLease al-

gorithm and show that it performs well even on wide area
networks. In addition, we compare the performance of FaT-
Lease and regular Paxos.

We have implemented the lease negotiation algorithm as
a single-threaded event-driven lease manager stage [16] as
part of the XtreemFS file server [7]. In the file server, the
FaTLease algorithm is used to negotiate per-file leases for
electing a temporary master that ensures data consistency
for concurrent write operations. Lease negotiation messages
are sent via UDP, since Paxos can tolerate message loss.

To allow for a fair comparison of FaTLease and regular
Paxos, we have used the same code base for both algorithms.
The regular Paxos requires state to be written to hard disk
for each prepare and accept. Before sending a response, the
acceptor must ensure that writes are persistent by calling
fsync. To achieve a higher throughput for regular Paxos,
we introduced an extra thread that writes multiple messages
(if available) to disk before calling fsync.



5.1 Scalability: Number of Leases
The first experiment evaluates how FaTLease performs

under peak loads of concurrent lease requests. In this con-
text, performance is the number of leases the system can
handle per second.

More specifically, we measured the time from starting the
first request until the last lease is acquired. This duration is
divided by the number of lease requests, which gives us the
throughput in terms of leases per second. We also measured
the number of communication timeouts as they are expected
to have an effect on the throughput. The number of failed
leases, i.e. leases that cannot be acquired after seven retries,
is used to estimate the system’s maximum throughput.

We used three setups to point out different factors that
limit the algorithm’s throughput. First, a setup where all
components are executed on a single machine is used to as-
sess the maximum throughput of our implementation. Sec-
ond, we estimate the effect of maximum network through-
put by using two machines connected via a Gigabit Ethernet
LAN. Finally, the effect of network link saturation is inves-
tigated in a wide area setup. All measurements were done
with FaTLease and with regular Paxos using stable storage.

Setup
The experiment ran on three machines, two of them (A and
B) located at our site and one PlanetLab node located in
Spain (C). Machines A and B are connected via a Giga-
bit Ethernet LAN and have 4 cores (Xeon with 2GHz and
3GHz) and 4 GB of memory each. Machine C has a single
CPU (Pentium D 3.2GHz), 1 GB memory. The connection
between A and C has a bandwidth of approx. 512kB/s per
direction with a ping round-trip-time of 66ms.

We used these machines in three different setups. In the
single machine setup we executed one proposer and one ac-
ceptor on machine A. For the LAN setup we executed one
proposer on machine A and the acceptor on machine B. In
the WAN setup the proposer was executed on Machine A
while the acceptor was running on the remote machine C.

A communication timeout is counted each time a proposer
does not receive a response from a majority to a prepare or
accept request within one second. For each lease the pro-
poser initiates up to seven rounds before giving up (failure).
To simulate request peaks, we submitted 100 to 40,000 lease
requests in a single batch.

Results and Analysis
For each setup, we measured the throughput, the number
of timeouts and the number of failed leases. Figure 5 shows
the results for the single machine, Figure 6 for the LAN and
Figure 7 the WAN setup. Unfortunately, the Linux VServer
used on PlanetLab nodes does not pass the fsync operation
to the underlying host system, therefore we were unable to
give results for regular Paxos in the WAN setup.

The single machine setup demonstrates the limits of our
implementation. With standard hardware, a single lease ne-
gotiation thread is able to handle up to 35,000 lease requests
without failures. With more leases, requests and incoming
packets cannot be processed in time, which causes frequent
timeouts (Fig. 5b).

In the single machine and LAN setups, FaTLease has a
sharp drop in throughput for 4,000 leases. This is due to
the fact that at 4,000 leases the first timeouts occur. This
means that the proposer had to wait 1 second and then

a) throughput (leases per second)

b) number of timeouts

c) number of failed leases

Figure 5: Concurrent lease negotiation in the single
machine setup for an increasing number of leases.



a) throughput (leases per second)

b) number of timeouts

c) number of failed leases

Figure 6: Concurrent lease negotiation in the LAN
setup for an increasing number of leases.

retransmit the request. So, these timeouts cause the pro-
poser to take more time, which reduces the throughput. For
regular Paxos, Fig. 5a and 6a show that the performance
drops between 2,000 and 4,000 leases. This happens because
disk bandwidth is not sufficient to ensure that all writes are
synced within the one-second timeout. The number of time-
outs and failed leases increases linearly with the batch size.

In the WAN setup, a maximum throughput is reached at
a batch size of 500 leases. Here the outgoing bandwidth
is approximately the same as the actual bandwidth of the
network link (512kB/s). For a batch size of 1,000 leases
timeouts occur which reduce the throughput in the same
way as in the single machine and LAN setting.

With a throughput of more than 2,500 leases per second
for 20,000 concurrent requests, we have demonstrated that
FaTLease is able to perform well even under heavy load on
a local LAN. The WAN setup also demonstrates that our
protocol is able to handle high lease volumes of up to 1,500
leases per second with low bandwidth (peak of accumulated
bandwith is 750kB/s). In contrast to Paxos, FaTLease is
not limited by the disk bandwidth, which leads to a signifi-
cantly higher throughput.

5.2 Scalability: Number of Hosts and Latency
In this experiment we investigate how network latency and

the number of acceptors influence the duration of the lease
negotiation with FaTLease and regular Paxos. Since the
number of acceptors would be equal to the number of sec-
ondary replicas in a replication system, this is an important
measure to rule out the lease negotiation as a bottleneck.

Setup
We used thirty machines, each running a single acceptor. A
single proposer was run on machine B (see Sec. 5.1). All
machines are connected through a Gigabit Ethernet LAN.
To simulate additional network latencies between the pro-
poser and acceptors, we delayed UDP packets. All acceptor
machines have two dual core Xeon 2.66GHz processors and
8GB RAM.

We measured the duration for the negotiation of a single
lease (from starting the request until receiving the response)
for 1 to 30 remote acceptors. Two experiments were con-
ducted, one with a round-trip time (RTT) of less than 1ms,
and the other one with a simulated RTT of 55ms. For each
data point we took the average of three measurements.

Results and Analysis
The duration is plotted in Figure 8, which shows that it stays
constant even for increasing numbers of remote acceptors.
This indicates that the lease negotiation is not a bottleneck
when scaling the number of hosts.

It is clearly visible that the duration of the negotiation
actually depends on the RTT. As consensus requires two
rounds of communication, the network latency sets the lower
bound for the duration. The additional latency of the two
fsync operations required for regular Paxos is around 33ms
(difference between the duration for FaTLease and regular
Paxos in Figure 8).

5.3 Effect of Disk Bandwidth
To demonstrate the effect regular Paxos has on the disk

bandwidth, we conducted two further experiments. In the
first experiment, we measured the disk bandwidth in the



a) throughput (leases per second) and network bandwidth

b) number of failed leases and number of timeouts

Figure 7: Concurrent lease negotiation in the Plan-
etLab WAN setup.

Figure 8: Scalability of lease negotiation depending
on the number of hosts.

Figure 9: Disk bandwidth in kB/s reported by iostat

single machine setup for both FaTLease and regular Paxos.
In the second experiment, we show how an application that
requires the full bandwidth for its operation affects the lease
negotiation.

Setup
We used the same setup as in the single machine setup in
Sec. 5.1. To measure the disk bandwidth we used iostat

and took the peak and average values for the duration of the
lease negotiation. For the second experiment, we used the
IOzone file system benchmark to create heavy write load on
the hard disk by executing a throughput test with a single
writer of a 2 GB file (iozone -t 1 -s2G).

Results and Analysis
The disk bandwidth reported by iostat is plotted in Fig. 9.
For regular Paxos, a maximum of 2,000 kB/s is reached for
4,000 leases. The fact that disk throughput stays nearly con-
stant for larger batches indicates that the disk is congested.
Consequently, the lease throughput decreases (see Fig. 5a
and 6a). In contrast, FaTLease shows a disk bandwidth
which is nearly zero.

In the second experiment (Fig. 10), regular Paxos was not
able to negotiate a single lease. Due to the high disk usage
generated by IOzone, acceptors could not respond within the
one-second response timeout interval. As expected, the mas-
sive disk usage had only little effect on FaTLease. However,
the throughput is lower than in the single machine setup in
Sec. 5.1, which is due to the CPU usage of IOzone.

6. CONCLUSION
We presented FaTLease, a fault-tolerant lease negotia-

tion algorithm based on Paxos. FaTLease uses distributed
consensus to guarantee the exclusiveness of a lease, and prof-
its from Paxos’ ability to achieve consensus in presence of
host and network failures. In the evaluation, we demon-
strated that our algorithm achieves both high throughput
and high concurrency even in wide area setups.

The scalability of FaTLease makes it useful in scenarios
where a large number of leases needs to be negotiated con-
currently. In fact, FaTLease has been implemented as part
of the replication component of the distributed file system
XtreemFS. There, FaTLease is used to reach consensus on



Figure 10: Influence of IOzone on throughput

a primary server that is responsible for a particular repli-
cated file.

FaTLease improves Paxos-based lease negotiation by not
having to resort to any persistent state. This allows us to
scale beyond the limits that are set by the process-local sta-
ble storage. Especially applications that need the local stor-
age resources for other tasks will benefit from this property,
although the advent of flash-based storage might alleviate
this difference. A further advantageous property of FaT-
Lease is the small amount of volatile state it maintains.
Because we can exploit the timing constraints in deciding
which Multipaxos instances to keep, we only need to track
a maximum of two Multipaxos instances per lease.

Because FaTLease is exploiting timing constraints, it has
to make assumptions about the synchrony of clocks of the
participating processes. We have factored in clock drift in
the design of the algorithm so that it can tolerate a clock
skew of dmax. However, this also means that faulting pro-
cesses have to wait for dmax+v until they are allowed to par-
ticipate again in lease negotiation. We assume that if pro-
cess clocks are synchronized by a time protocol, the bound
of clock skew between processes will be of a size that does
not dominate the startup delay of recovering processes. This
also implies that a failed process will always lose its leases.
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