
Flease - Lease Coordination without a Lock Server

Björn Kolbeck, Mikael Högqvist, Jan Stender
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Abstract—Large-scale distributed systems often require scal-
able and fault-tolerant mechanisms to coordinate exclusive
access to shared resources such as files, replicas or the primary
role. The best known algorithms to implement distributed
mutual exclusion with leases, such as Multipaxos, are complex,
difficult to implement, and rely on stable storage to persist
lease information.

In this paper we present FLEASE, an algorithm for fault-
tolerant lease coordination in distributed systems that is
simpler than Multipaxos and does not rely on stable storage.
The evaluation shows that FLEASE can be used to implement
scalable, decentralized lease coordination that outperforms a
central lock service implementation by an order of magnitude.
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I. INTRODUCTION

The problem of coordinating exclusive access to a shared
resource crops up in a wide range of distributed applications,
including: SAN-based cluster file systems, which need to
ensure exclusive access to disk blocks [1], [2]; replicated
file systems, where file updates must be serialized [3], [4],
[5], [6]; and primary/backup schemes [7], [8] that ensure
only one server has the primary role. The latter application
is particularly important as it is often easier to implement
a service with a primary server that replicates its state to
backup servers than it is to implement a fully decentralized
system where all decisions are coordinated [9], [10].

Systems for all of these applications have the same basic
structure: processes compete for exclusive access to a set of
resources. Once a process has gained the right to exclusive
access, it holds a lock on the resource and is called the owner
of the resource. The problem of guaranteeing exclusive
access in such systems can be broken down into two sub-
problems:
• revocation. If the process owning a resource crashes

or is disconnected, ownership of the resource must be
revoked and assigned to another process.

• agreement. All processes need to agree that a specific
single process is the owner of a resource.

The revocation sub-problem can be solved by leases [11].
A lease is a token that grants access to a resource for a
predefined period of time. Its timeout acts as an implicit re-
vocation mechanism. The resource becomes available again

as soon as the lease times out, regardless of whether the
owner has crashed, has been disconnected or has simply
ceased responding in a timely way. Due to their simplicity,
leases are employed in many distributed systems, such as
replicated file systems [12], [4], [13], [14], the Hadoop
Map-Reduce framework, SAN-based file systems [1] and
Google’s BigTable [15].

Agreement, the second sub-problem, needs to be solved
for leases as well: at any point in time there may exist at
most one valid lease for a resource in the system. This
agreement can be formulated as a distributed consensus
problem, a problem for which there are known solutions,
such as Multipaxos [16]. Numerous lock services in large-
scale production systems, such as Google’s Chubby [17] and
Microsoft’s Centrifuge [18], rely on Multipaxos. Typically
there is a single Multipaxos instance per lease. Within each
instance Multipaxos executes Paxos [19] to reach consensus
on the owner and timeout of the lease. When a lease
times out, a new instance is needed to agree on the next
lease. Because of this multiplicity of instances Multipaxos
is very complex and error-prone to implement [20]. Paxos
also requires two writes to stable storage per lease, which
increases response latency and limits the throughput of the
system to the bandwidth of the disk.

In this paper we introduce FLEASE, a novel algorithm
for lease coordination based on Paxos that is less complex
than Multipaxos and does not require stable storage. FLEASE
is founded on a round-based register abstraction that was
derived from Paxos [21]. By using the register FLEASE also
inherits the fault-tolerance of Paxos: it reaches agreement
as long as a majority of processes responds and it can deal
with host failures and message loss as well as reordering
and delays. Like Paxos, FLEASE is suitable for use in real
systems.

In contrast to Paxos, FLEASE takes advantage of lease
timeouts to avoid persisting state to stable storage. Diskless
operation means FLEASE can run concurrently on the same
machine with I/O-intensive applications such as file or
database servers. In section III, we show how this feature
facilitates the design of systems that coordinate leases in
a decentralized manner. The decentralized design exhibits
greater scalability than a central lock service, which is often
is a bottleneck [9], [22].



In the next section (Section II), we present FLEASE along
with a proof of its correctness (Section II-C to II-H). In
Section III we discuss the decentralized design. We then
evaluate FLEASE alongside a central lock service in several
experiments, which center on scalability and heavy I/O load
(Section IV). Section V surveys related algorithms and lock
services as well as the systems that use them.

II. THE FLEASE ALGORITHM

The main building block of FLEASE is a round-based
register derived from Paxos by Boichat et al. [21]. The
register has the same properties as Paxos regarding process
failures and message loss but assumes a crash-stop behavior
of processes as it lacks persistent storage. This abstraction
of Paxos’s core allows us to clearly illustrate the basic ideas
of FLEASE as well as the differences between it and regular
Paxos. We can also take advantage of the proven correctness
of the register and of Paxos itself in order to prove the
correctness of FLEASE.

A. System Model and Definitions

We assume a system model similar to the timed asyn-
chronous model defined in [23] with a finite and fixed
set of processes Π = p1, p2..pn with each process pi
making progress at its own speed. We also assume that each
process has access to a local (hardware) clock ci. These
clocks increase strictly monotonically, i.e. ci(t) < ci(t

′) if
t < t′. We require that the processes maintain a loosely-
synchronized time, such that there is a known upper bound
ε on the drift between any two clocks. This implies that
the difference of the time reported by two clocks ci(t)
and cj(t) at the global time t is always less than or
equal to ε. At any time t the following condition must
hold: ∀pi, pj ∈ Π (ε ≥ |ci(t)− cj(t)|). Our assumption of
loosely-synchronized clocks is a stricter requirement than
the maximum known drift of the clock rates as required
by the timed asynchronous model. In order to simplify the
presentation we start with an initial version of FLEASE
that assumes perfectly-synchronized clocks, i.e. ε = 0. We
subsequently extend the algorithm to also allow loosely-
synchronized clocks.

We assume that communication channels are unreliable in
the sense that messages can be lost and delayed but are not
altered or duplicated.

We do not assume that processes have access to stable
storage. In the basic version of the algorithm, we ignore
the problem of processes losing their state when they crash
and assume a crash-stop model. For the final version of the
algorithm, we extend this to a crash-recovery model, where
processes can recover from a crash and re-join the system
with an empty state.

A lease is defined as a tuple λ = (pi, t). The lease is held
by process pi and is valid as long as ci(tnow) ≤ t with tnow
as the current time. A lease has expired if ci(tnow) > t. We

define the maximum time span of lease validity as tmax.
For the system to make progress, we require that tmax > ε.
Both tmax and the clock drift ε are system-wide constants
known to all processes. In Section II-G we explain how to
choose concrete values for these constants.

B. The Distributed Round-Based Register

The distributed round-based register implements a shared
read-modify-write variable in a distributed system. The
register arbitrates concurrent accesses, with semantics that
resemble those of a microprocessor’s test-and-set operation.
This register is the core of the Paxos algorithm.

The register algorithm is shown in figure 1. The register
has two operations: READ(k) and WRITE(k, v). k is a unique
identifier (or ballot number, in Paxos terms) generated by the
process initiating the operation; in Section II-H we show
how to generate this identifier with a total order among
processes. v is the value to be written to the register. Both
operations either commit or abort. If a read commits, it
returns the current value v of the register or ⊥ if the register
is empty. A detailed description of the algorithm and proofs
of the following lemmas can be found in [21].

Lemma R1: Read-abort: If READ(k) aborts, then some
operation READ(k′) or WRITE(k′, ∗) was invoked with k′ ≥
k.

Lemma R2: Write-abort: If WRITE(k, ∗) aborts, then
some operation READ(k′) or WRITE(k′, ∗) was invoked with
k′ > k.

Lemma R3: Read-write-commit: If READ(k) or
WRITE(k, ∗) commits, then no subsequent READ(k′) may
commit with k′ ≤ k or WRITE(k′′, ∗) may commit with
k′′ < k.

Lemma R4: Read-commit: If READ(k) commits with v
and v 6=⊥, then some operation WRITE(k′, v) was invoked
with k′ < k.

Lemma R5: Write-commit: If WRITE(k, v) commits
and no subsequent WRITE(k′, v′) is invoked with k′ ≥ k
and v 6= v′, then any READ(k′′) that commits will do so
with v if k′′ > k.

C. The basic FLEASE algorithm

Similar to Paxos, processes in FLEASE can have two
roles. Proposers actively try to acquire a lease or attempt
to find out which process holds a lease. Acceptors are
passive, receiving read and write messages of the round-
based register and storing k and v according to the algorithm
of the round-based register.

The basic version of the FLEASE algorithm is shown in
algorithm 2. The GETLEASE procedure is executed by a
proposer when it wants to acquire the lease. The proposer
starts by reading the register value (line 2). If the register is
either empty or the lease has timed out, the proposer will
overwrite the register with its own lease (line 3 and 4). If
the register contains a valid lease, it does not change the



Algorithm 1 round based register for process pi, from [21]
readi ← 0
writei ← 0
vi ←⊥

procedure READ(k)
send (READ,k) to all processes in Π
wait until received (ackREAD,k,∗,∗)

or (nackREAD,k) from dn+1
2 e processes

if received at least one (nackREAD,k) then
return (abort,⊥)

else
select the [ackREAD,k,k′,v] with the highest k′

return (commit,v)
end if

end procedure

procedure WRITE(k,v)
send (WRITE,k,v) to all processes in Π
wait until received (ackWRITE,k) or (nackWRITE,k)

from dn+1
2 e processes

if received at least one (nackWRITE,k) then
return abort

else
return commit

end if
end procedure

upon receive (READ,k) from pj
if writei ≥ k or readi ≥ k then

send (nackREAD,k) to pj
else

readi ← k
send (ackREAD,k,writei,vi) to pj

end if
end upon

upon receive (WRITE,k,v) from pj
if writei > k or readi > k then

send (nackWRITE,k) to pj
else

writei ← k
vi ← v
send (ackWRITE,k) to pj

end if
end upon

Algorithm 2 The basic algorithm
1: procedure GETLEASE(k)
2: if READ(k) = (commit, λ) then
3: if λ =⊥ or λ.t < tnow then
4: λ← (pi, tnow + tmax)
5: end if

6: if WRITE(k,λ) = commit then
7: return (commit,λ)
8: end if
9: end if

10: return (abort,⊥)
11: end procedure

register. Then the proposer writes the lease (either its own
or the valid lease it has just read) into the register (line 6)
and returns the lease as the result of GETLEASE.

The proposer must always write the lease because writes
can be incomplete. An incomplete write occurs when a
proposer p crashes while sending write messages to the
acceptors or when a majority of the messages are lost. In
these cases p will return either nothing as it has crashed
or will return (abort,⊥) (line 10). However, when another
proposer p′ runs FLEASE after p has failed, the outcome
of the READ operation is undefined. The next read might
return the last value p tried to write or the value before the
incomplete write. This depends on which acceptors respond
to p′. Ergo, p′ must ensure that any lease it returns has been
successfully written to the register, regardless of whether
the lease is owned by p′ or the lease has been read from
the register. To ensure this, p′ must wait for the WRITE to
commit before it is allowed to return the lease. This WRITE,
together with Lemma R3, ensures that all proposers running
after p′ will return the lease p′ has returned.

To illustrate what would happen without this write step,
assume that p1 writes a lease to the register but fails due
to message loss. Now p2 reads the register and reads the
lease from p1 and returns the lease for p1. Then p3 reads
the register but gets only responses from acceptors that did
not receive p1’s message. p3 would now write its own lease
to the register and the system would have two valid leases
at the same time.

D. Proof

In order to prove the correctness of FLEASE we must
demonstrate that the algorithm guarantees that there is at
most one valid lease at any point in time. We call this the
Lease Invariant.

Property L1 (Lease Invariant): If a process p decides
λ = (p, t) then any other process will decide λ until tnow >
t. This is similar to the agreement property of consensus but
allows processes to decide a different value after the lease
has timed out.



Proof by contradiction: Assume two processes pi and pj
decide two different values λ = (p, t) and λ′ = (p′, t′) with
λ 6= λ′, t > tnow and t′ > tnow, i.e. two different leases
are valid at the same time. Without loss of generality, we
assume that k′ > k and that pi decides λ after committing
GETLEASE(k). Afterwards pj decides λ′ after committing
GETLEASE(k′). Following Algorithm 2, pj must commit
READ(k′) before calling WRITE(k′, λ′). The read-abort prop-
erty of the register (lemma R1) ensures that the READ will
commit because k′ > k. Due to the write-commit property
of the register (lemma R5), the READ will commit with λ as
this value was previously written by pi. Depending on the
value of λ.t, process pj will make one of two decisions:

Case 1:λ.t ≥ tnow (the lease λ is still valid)
According to the algorithm, pj will WRITE(k′,λ)
and decide λ′ = λ. However, this is a contradiction
to the assumption that λ′ 6= λ.

Case 2:λ.t < tnow (the lease λ has expired)
In this case, pj would WRITE(k′,λ′) and decide
λ′ 6= λ but is allowed to do so as we require
pj to decide λ only until tnow > λ.t. This is a
contradiction of the assumption that t > tnow and
t′ > tnow.

E. Lease Renewals
With the basic version (algorithm 2), a lease owner will

lose its lease in the period after an old lease has timed out
and before a new lease has been coordinated. During this
time, which takes at least two message round trips, there is
no lease and consequently the resource cannot be accessed.
The effect of lease renewals is illustrated in Figure 1. To
avoid these interruptions, the owner of a lease should be
allowed to prolong the lifetime of the lease as long as the
original lease is still valid. Algorithm 3 shows an extended
version of the basic FLEASE algorithm that includes lease
renewals. In line 6, the proposer extends the lifetime of its
lease if it is still valid (line 5).

Algorithm 3 The extended algorithm with lease renewal
1: procedure GETLEASE(k)
2: if READ(k) = (commit, λ) then
3: if λ =⊥ or λ.t < tnow then
4: λ← (pi, tnow + tmax)
5: else if λ.p = pi then
6: λ← (pi, tnow + tmax)
7: end if

8: if WRITE(k,λ) = commit then
9: return (commit,λ)

10: end if
11: end if
12: return (abort,⊥)
13: end procedure

time

lease 1
process A

lease 2
process A

lease
timeout

delay of at least
two message round-trips

time

lease 1
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lease A
timeout

lease B
timeout

Figure 1. Lease coordination without renewal (top) and with lease renewal
(bottom).

F. Proof

To allow lease renewal we must relax the lease invariant
to require processes to output the same lease owner, not
necessarily the same lease timeout.

Property L2 (Lease Invariant): If a process p decides
λ = (pl, t) then any other process will decide λ′ = (p′l, t

′)
with p′l = pl and t′ ≥ t until tnow > t.

The proof by contradiction is similar to the proof for
property L1. However, we assume that two processes pi and
pj decide two different values λ = (pl, t) 6= λ′ = (p′l, t

′)
with t > tnow and t′ > tnow and pl 6= p′l, i.e. two different
leases with different lease owners are valid at the same time.
Depending on the value of λ.t, process pj will make one of
the three decisions:

Case 1:λ.t ≥ tnow (lease λ is still valid)
Case 1a:λ.p 6= pj (pj does not hold the lease)

Same as case 1 in proof of lemma 1.
Case 1b:λ.p = pj (pj holds the lease)

According to the algorithm, pj will
WRITE(k′,λ′) and decide λ′ with p′l = pl
and t′ > t. However, this is a contradic-
tion to the assumption that p′ 6= p.

Case 2:λ.t < tnow (the lease has expired)
In this case, pj would WRITE(k′,λ′) and decide λ′

but is allowed to do so as we require pj to decide
λ only until tnow > λ.t. This is a contradiction to
the assumption that t > tnow and t′ > tnow.

G. Allowing Processes to Recover

The round-based register assumes a crash-stop model, as
it does not use persistent storage to recover the content of
the register after a crash. In order to allow the register to
recover from a crash, the values for k must be stored on
stable storage for each READ(k). k and v must also be stored



for WRITE(k, v). Thus, the state of the register on each node
i consists of the three values readi, writei and vi.

Here we can exploit the fact that leases expire: in our
algorithm, an empty register or a register with a lease that
has expired are equal. Thus we can turn the register into a
crash-recovery model for our leases. In order to do this we
require a recovering process to wait until tmax has passed
before it may rejoin the system. During this waiting period
the process is not allowed to participate in lease coordination
and must not send messages. By forcing processes to wait
until tmax has passed, we can guarantee that any lease that
was in the register when the process crashed has timed out.

A second problem with crash-recovery is that we have to
ensure that the register will abort a READ or WRITE with k′

if k′ is smaller than the k used for the previous READ and/or
WRITE operation (lemmas R1 and R2). However, a process
that recovered from a crash has lost its complete state, which
includes readi and writei. To guarantee that any k′ used
after such a crash is larger than the maximum k seen before
the crash, we again take advantage of synchronized clocks.
We use the current time as the ballot number and therefore
guarantee that k′ > k always holds. To distinguish messages
sent at the same time, we use a ballot number k = (t, idp)
with idp being a unique process id. The total order on k is
then defined as k < k′ ⇔ (k.t < k′.t)∨(k.t = k′.t∧k.idp <
k′.idp).

H. Final Algorithm with Loosely-Synchronized Clocks

An algorithm based on perfectly-synchronized clocks is
of little practical value. To make FLEASE suitable for real-
world use, we extend it to work with loosely-synchronized
clocks. As mentioned earlier, we expect host clocks to be
loosely-synchronized, i.e. the difference between any two
clocks does not exceed a certain maximum.

Algorithm 4 is an extended version of the algorithm with
lease renewal (algorithm 3) that also takes clock drift into
account. We introduce a safety period sp between the time
when the lease expires and when a new lease can be issued.
During the safety period it is unknown if the current lease
owner still considers the lease to be valid or expired due to
clock drift. However, after ε time, any process can safely
assume that the lease has expired on all hosts and can
execute the regular algorithm 3.

The algorithm is correct with respect to the lease invariant,
since the section that modifies the lease is identical to
algorithm 3.

I. Crash-Recovery with Loosely-Synchronized Clocks

Since we assume that ε < tmax, we can also guarantee
k′ > k in the case of loosely-synchronized clocks. However,
the process with the fastest clock (i.e. maximum c(t)) will
always acquire the lease. To alleviate this problem, we use
intervals when comparing timestamps. We use an interval
length of tmax− ε < tmax to guarantee that this works with

Algorithm 4 The full FLEASE algorithm for loosely-
synchronized clocks

1: procedure GETLEASE(k)
2: if READ(k) = (commit, λ) then
3: if λ.t < tnow and λ.t+ ε > tnow then
4: wait for ε
5: return GETLEASE(k′) . with k′ > k
6: end if

7: if λ =⊥ or λ.t < tnow then
8: λ← (pi, tnow + tmax)
9: else if λ.p = pi then

10: λ← (pi, tnow + tmax)
11: end if

12: if WRITE(k,λ) = commit then
13: return (commit,λ)
14: end if
15: end if
16: return (abort,⊥)
17: end procedure

processes that recover after a crash. We define this interval
as

I(t) =

⌊
t

tmax − ε

⌋
We now extend k = (t, r, idp) to include an additional
message number r that is used to distinguish the messages
sent by a process within the same interval. Since r must only
be unique within an interval, there is no need to store this
number on stable storage. With this interval, we redefine the
total order < on the values for k as

k < k′ ⇔
(I(k.t) < I(k′.t))

∨ (I(k.t) = I(k′.t) ∧ k.r < k′.r)

∨ (I(k.t) = I(k′.t) ∧ k.r = k′.r ∧ k.idp < k′.idp)

This new definition of k ensures that in most cases all
processes have equal chances to get a lease. Only in a period
of ε time before and after an interval, the process with the
fastest clock will still get the lease.

J. Practical Considerations

Like any algorithm working with leases, FLEASE requires
loosely-synchronized clocks and the parameters ε and tmax

must be carefully chosen for the particular environments
FLEASE is used in. To choose a value for ε, the developer
needs to take into account the drift of the local real time
clocks of the nodes and the imprecision of the clock syn-
chronization algorithm used. [23] gives more details on real
time clocks and the drift rates.



When choosing tmax we need to take the maximum
message round-trip delay into account. tmax must be longer
than twice the maximum message round-trip in the system.
This ensures that a lease is still valid after FLEASE was
executed on the proposer.
tmax should be set as high as possible to reduce the

frequency of lease renewals and to give lease owners enough
time to execute operations on owned resources. On the other
hand, tmax should be as short enough to ensure that inter-
ruptions due to crashed lease owners are kept to a minimum.
The right balance between these two goals depends on the
application, e.g. an application such as a online store must
provide short timeouts to ensure low latency in the presence
of crashes. In contrast, a batch application might be able to
tolerate longer timeouts, in the range of several minutes.

Like Paxos and Multipaxos, FLEASE assumes that the
group of nodes participating in FLEASE executions is fixed.
For applications that require this group to be mutable,
FLEASE has to be complemented with a set membership
service [24].

III. DECENTRALIZED LEASE COORDINATION

Current research and production systems that require
exclusive access are often built around replicated central
lock services that coordinate lease agreement [14], [4], [12],
[6], [15]. The central lock service decides which process
becomes the owner of the resource and ensures that only
one process has a valid lease per resource (Figure 2a). In
this setup, each process can request a lease for any resource.

Often, the assumption that all process accesses all re-
source is too general. In many systems, a resource is as-
signed to a small group of processes and only the processes
in that group access the resource. For example, changes to
file replicas only need to be coordinated among the servers
hosting the replicas (a pattern that can be found in Google’s
GFS [6], CEPH [13] or WheelFS [14]). In these systems
the natural partitioning of processes according to which
resources they access is a core design feature that enables
the systems to scale to a large number of resources.

Introducing a central lock service into such systems sacri-
fices the scalability achieved through the natural partitioning
and creates a bottleneck [9], [22]: The number of resources
the system can handle is limited by the throughput of the
central lock service. Similarly, the availability of the entire
system depends on this central component.

Decentralized lease coordination (Figure 2c) automati-
cally takes advantage of natural partitions by relegating
access coordination for a given resource to the processes
that a resource is assigned to, rather than relying on a
central component. The decentralized design removes the
central lock service and thereby enhances scalability and
availability.

However, the algorithms at the core of existing central
lock services make decentralized lease coordination infeasi-

ble. Replicated lock services rely on either Multipaxos [17],
[14], [4], [12] or a primary/backup replication scheme with
two-phase-commit [25], both of which require two writes to
stable storage per lease acquisition. The extra disk traffic can
adversely affect the IOOPs and throughput of I/O-intensive
applications such as distributed file systems, as we show in
the next section.

Implementing such a decentralized design with FLEASE
has numerous advantages over the centralized approach:

1) Scalability. The system scales with the number of
resources and machines in the system as the leases
are coordinated among the processes. This removes
the bottleneck of the central lock service and also
reduces the need for makeshift solutions like volume
leases [26] or manual partitioning.

2) Availability. The availability of a resource depends
only on the availability of the processes which the
resource is assigned to. In contrast, with a central lock
service, the overall system availability depends on the
availability of the machines of the lock service. This is
particularly important when resources are distributed
across datacenters but the lock service is bound to a
single datacenter.

3) Lower latency. By avoiding stable storage, FLEASE
reduces the latency per request. In addition, the de-
centralized setup also removes the round-trip between
clients and the central lock service.

IV. EVALUATION

In order to evaluate the claims above we conducted three
experiments with our full implementation of FLEASE. In the
first experiment, we compare the throughput of FLEASE and
a central lock service with an increasing number of nodes
and resources in the system. We also look at the maximum
throughput of the central lock service. In the second exper-
iment, we compare the throughput of both systems under
heavy I/O load. In a third experiment, we investigate how
FLEASE scales with increasing process group sizes.

The experiments used Apache Zookeeper 3.2.2 [25] as the
central lock service and the FLEASE implementation that is
part of the XtreemFS distributed file system [27]. Zookeeper
is the central lock and configuration service of the Apache
Hadoop project, an open source implementation of the Map-
Reduce framework. Zookeeper’s functionality is comparable
to the proprietary Chubby implementation at Google [17],
the main difference being that the Zookeeper service is
replicated with a primary/backup scheme and uses a two-
phase commit for write operations, whereas Chubby uses
Multipaxos for service replication. The implementations of
Zookeeper and FLEASE are comparable: both are written in
Java with efficient network IO (Java NIO). In terms of com-
munications cost and latency, both FLEASE and Zookeeper
require two network round trips for a lease. However, due
to its centralized nature Zookeeper also incurs the cost of
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communication between service clients and servers. The
latter cost is included in the measurements presented here.

We ran all experiments on a 33-machine cluster connected
with regular 1GBit Ethernet. Each machine has two quad-
core Opterons running at 2.3 GHz, 8GB RAM and one SATA
hard drive. All machines run Linux 2.6.31 and a 64bit Java
1.6.0 18 virtual machine. In addition, we used a Sun Fire
X4540 (Quad-core Opteron 2.3GHz, 32GB RAM, 48 SATA
HDDs) machine to record file system traces with a FUSE
module that records and sends operations to the local file
system.

A. Throughput

To asses the maximum throughput of both systems, we
measured service throughput in leases per second on each
machine. All machines simultaneously submitted a batch of
leases, and we measured the locally-observed throughput
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Figure 3. Throughput for batches of 1,000 (top) and 50,000 (bottom)
leases with 3, 5, 10, 20 and 30 concurrent clients. Error bars show the
standard deviation.

for batches of 1,000 and 50,000 leases with 3, 5, 10, 20
and 30 machines. For FLEASE we use a group size of
3 machines, i.e. each machine uses a set of two other
machines for coordinating its leases. Similarly, we replicated
the Zookeeper service across three servers, with the other 30
machines acting as clients requesting leases at the master
server. We disabled synchronous disk writes for Zookeeper
to ensure that we measured the throughput of the software,
not the performance of our hardware.

Figure 3 depicts the average throughput per machine in
leases per second. As expected FLEASE produces a constant
throughput that is independent of the number of machines
(and resources) we use. The results for three machines
demonstrate that our FLEASE implementation still has po-
tential for optimization, as it can handle fewer leases per
second than the Zookeeper implementation. The throughput
for Zookeeper is limited by the maximum throughput of
the replicated server, which means that the throughput per
machine drops as expected when adding machines.

The experiment shows that a central lock service limits the



benchmark average min max
dbench 3.04, 10 clients 423 1 1576
linux kernel build 1308 1 2169

Table I
FILE OPEN RATE IN OPEN CALLS PER SECOND FOR VARIOUS

BENCHMARKS.

overall scalability of the system. Zookeeper has a maximum
throughput of 7,336 leases per second. In contrast, FLEASE
can handle up to 51,029 leases per second (30 machines,
10,000 leases per batch).

To put these numbers into perspective, we used an ap-
proach similar to the way Schmuck et al. [1] evaluated the
performance of the GPFS lock manager. We recorded traces
from a dbench [28] run with 10 concurrent clients and from
a Linux kernel build on a local system. Dbench is a file
system benchmark that simulates load with traces recorded
from Windows workstations. Then we extracted the file open
rate from the trace. The results are shown in table I. In
distributed or replicated file systems where a lock per file
is used, the maximum throughput of 7,336 leases would be
sufficient to handle the average load of 165 dbench clients
or six clients compiling the Linux kernel. In contrast, with
FLEASE we can easily remove this bottleneck and build a
scalable system that takes advantage of the decentralized
lease coordination.

B. Throughput under I/O Load

The algorithms used in central lock services such as
Zookeeper and Chubby require stable storage to operate
correctly. In order to assess the impact of I/O cross-traffic
on these services, we ran IOZone [29] on the same machine
as the Zookeeper servers and FLEASE while the latter
were attempting to coordinate leases. We ran an IOZone
throughput test with one thread writing a 10 GB file in 512k
chunks, with an additional delay of 7ms between operations
to ensure the machine didn’t get overloaded by IOZone
alone. Then we executed a throughput test similar to the
first experiment with three machines and batch sizes of
100 to 50,000 leases. For this experiment, we activated the
forceSync option of Zookeeper to ensure that data has been
safely written to disk before answering requests. By default,
Zookeeper batches requests into larger blocks before syncing
to disk.

The results in figure 4 clearly show that Zookeeper’s
performance depends on the I/O load generated by other
processes on the machine. In contrast, FLEASE is only CPU
bound and is not affected by concurrent I/O load. This
experiment demonstrates that algorithms that require stable
storage are not suitable for decentralized setups when I/O
bandwidth is required for the main task of the application.
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Figure 4. Throughput for batches of 100 to 50,000 leases on three nodes
with concurrent IOZone throughput test. Error bars show the standard
deviation.

C. Group Size

Finally, we investigated the throughput of FLEASE with
varying group sizes. Since FLEASE is CPU-bound, we
expect its throughput to decrease with larger groups due to
an increase in the number of messages FLEASE processes
must exchange. We measured the throughput for a 10,000
lease batch submitted by all 30 machines. However, this time
we used groups of 3, 4, 5, 6, 7, 8, 9, 10 and 15 machines, i.e.
each machine selected 2..9 or 14 other machines randomly
to coordinate its leases with. Figure 5 plots the throughput
per node. As expected, the throughput drops with larger
group sizes due to the increasing number of messages. This
experiment indicates that FLEASE in a decentralized setup is
suitable for large numbers of machines as long as the groups
of processes trying to access a lease are relatively small.
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V. RELATED WORK

Several algorithms for distributed lease coordination have
been developed and studied for various system models.

In [30] Chockler and Malkhi introduced a fault-tolerant
algorithm for timed asynchronous systems with shared mem-
ory. They specifically designed their algorithm for SAN-
based file systems with (hardware) shared memory. This
model is not applicable to shared-nothing architectures as
used in e.g. distributed file systems running on commodity
hardware.

Fetzer et al. have developed a leader election algorithm
for the timed asynchronous model [23]. This algorithm
implements leader election with expiration time, which is
essentially a lease. The algorithm is not fault-tolerant and
does not consider processes that recover after a crash.

An algorithm for truly asynchronous systems was pre-
sented by Boichat et al. [31]. However, due to the lack of
time in asynchronous systems, their lease approach works
with logical time. This means that their variation of leases
does not guarantee exclusive access at a point in time.
Rather, the goal of their leases is to speed up the execution
of algorithms in asynchronous systems by reducing concur-
rency through a coordinator role. In a more general context,
Lampson [32] argued that consensus with Paxos can be made
more efficient by using a single master elected with a lease.

FaTLease [33] utilizes regular consensus with Paxos to
agree on a lease owner. A scheme with instances similar to
Multipaxos [16] is used for continuous lease coordination.
This results in a far more complex algorithm compared to
FLEASE. Distinguished renew-instances in FaTLease ensure
that a lease can be renewed by the owner even when other
processes try to acquire the lease.

Central lock services are widely employed for lease
coordination. The most prominent example is Google’s
Chubby [17], [20], which is implemented using Multipaxos
to replicate the lease database. Other services at Google rely
heavily on Chubby for e.g. master election in the Google
File System (GFS) [6]. Centrifuge [18] is a decentralized
configuration service with a centralized lock service that is
also implemented using Paxos.

For file replication, the authors of WheelFS [14] recom-
mend using a central lock service for master leases. The
Frangipani [4] file system design, in contrast, included a
Paxos-replicated configuration service that issues locks to
partition masters, which is conceptually similar to Chubby.
Farsite [12], a distributed peer-to-peer file system, employs
leases for data and metadata access. To avoid contention
on metadata entries, each field of a metadata record has
its own lease [34]. In Farsite leases are coordinated by
a directory group, which is implemented as a replicated
service. Zookeeper [25], the lock service of the Hadoop
project, uses a token-based algorithm for leader election and
two-phase-commit with majorities for data replication. The

token-based algorithm makes Zookeeper unsuitable for use
in multi-datacenter installations.

Many systems [35], [36], [3], [37] rely on heartbeat
messages between servers or between a central configuration
service and the servers. When a process fails to receive
heartbeat messages from another, resource-owning process
the former process infers that the latter has crashed or is
disconnected. If the resource owner is unreachable, another
machine takes over ownership of the resource. This ap-
proach is often used in cluster environments but can lead
to inconsistencies: heartbeat messages are not a reliable
failure detector during network partitions, when two server
processes may not be able to contact each other but can still
receive requests from client machines.

Paxos [19], [38], [39] is a well-studied algorithm that
implements consensus in the timed asynchronous system
model. Due to its simplicity in design and direct applicability
to real-world systems Paxos is widely used. The algorithm
relies on a quorum approach and is thus able to tolerate the
failure of a minority of processes (up to dn+1

2 e out of n
processes). It is also able to tolerate message loss and delay.
The algorithm works in two phases in which a proposer
exchanges messages with all other processes in the system.
During each phase, all processes have to write their state to
stable storage. The requirement of persistent storage adds
extra latency to the system, which can be significant. For
the FLEASE algorithm we use the abstraction of a round-
based register that was derived from Paxos in a modularized
deconstruction by Boichat et. al [21].

VI. CONCLUSION

We have presented FLEASE, a novel algorithm for lease
coordination in distributed systems, and have proved its
correctness. The system assumptions made and failure cases
considered for FLEASE make it suitable for real-world
systems. An implementation of FLEASE is freely available
under the BSD license as part of the XtreemFS file system.

We illustrated how FLEASE enables decentralized lease
coordination that avoids the scalability bottlenecks of central
lock services, and demonstrated this fact in our evaluation
of FLEASE and Zookeeper. We have shown that FLEASE
overcomes the problems of current algorithms used in central
lock services.
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