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Abstract

A file system snapshot is a stable image of all files and
directories in a well-defined state. Local file systems offer
point-in-time consistency of snapshots, which guarantees
that all files are frozen in a state in which they were at the
same point in time. However, this cannot be achieved in a
distributed file system without global clocks or synchronous
snapshot operations.

We present an algorithm for distributed file system snap-
shots that overcomes this problem by relaxing the point-in-
time consistency of local file system snapshots to a time
span-based consistency. Built on loosely synchronized
server clocks, it makes snapshots available within millisec-
onds, without any kind of locking or synchronization. Our
evaluation demonstrates that enabling and accessing snap-
shots involves a read/write throughput penalty of no more
than 1% under normal conditions.

1. Introduction

For many of today’s companies and organizations, stored
data belongs to the most valuable assets. It is therefore es-
sential to protect it from malicious manipulation, accidental
deletion and hardware failures. Snapshotting and version-
ing file systems address these problems by retaining pre-
vious versions of files and directories, thus allowing users
and administrators to perform roll-backs if necessary and to
copy stable images to a backup system.

A wide range of snapshotting and versioning file sys-
tems have been developed throughout the last 25 years
[1, 28, 2, 26, 33, 32, 15, 12, 5, 29, 10]. However, they were
designed to run on local machines or single servers, while
the need for storage space has outgrown the capacity of indi-
vidual nodes. As a result, distributed storage has constantly
gained in importance. In particular, the concept of object-
based storage [8, 22] has emerged as the prevalent design
pattern for modern distributed and parallel file systems, as
object-based storage systems can be scaled out easily with
inexpensive commodity hardware. Most of the top 500 su-

percomputers in the world use prominent representatives of
object-based file systems like Lustre [6] or Panasas Active
Scale [36] to accommodate their huge demands for storage
resources. We believe that snapshotting mechanisms can
protect large-scale object-based file systems from an un-
wanted loss or manipulation of data. Not only do they allow
users to restore previous versions of their files, but they can
also be used to create backups in a meaningful and well-
defined state.

File system snapshots are generally expected to reflect
all files and directories in a state in which they were at a
certain point in time. We refer to this property as point-in-
time consistency of snapshots, which is offered by a range
of local file systems [1, 28, 15, 12, 5, 29]. In a distributed
file system, however, enforcing this consistency semantics
has major drawbacks. It would either require a synchro-
nized snapshot operation that obviates changes to files while
snapshots are being taken, or a global time. While the for-
mer has major performance implications, the latter cannot
be put into practice, as clocks cannot be shared or perfectly
synchronized between servers. However, it is feasible to
synchronize server clocks in a loose manner, i.e. to effec-
tively limit the drift of server clocks to an external reference
clock. Technologies and protocols like GPS or NTP make
it possible to set an upper bound on the clock drift in the
range of milliseconds and less [30, 23].

We introduce the concept of loose time synchrony that re-
laxes point-in-time consistency of snapshots to a time span-
based consistency. It ensures that the time span during
which files on different servers are effectively captured in
a snapshot is no larger than the upper bound on the clock
drift between these servers. Backups based on such snap-
shots reflect all changes to all files within a narrow time
frame, irrespective of the duration of the backup process or
changes made to files and directories while the backup was
created.

In this paper, we show that it is feasible to maintain
loosely time-synchronized snapshots of a distributed object-
based file system with a marginal performance penalty. We
present a distributed snapshot algorithm that offers this se-
mantics together with various other desirable features:



• New snapshots become available almost instanta-
neously. The time for taking a global snapshot of the
entire file system can effectively be limited to millisec-
onds, regardless of the number of files and servers.

• Snapshots can be taken on-line, without affecting or
inhibiting normal access to the file system.

• Single server failures have a limited impact on the
availability of a snapshot, as only those parts that were
stored on the affected servers become inaccessible.

• No server-to-server communication is needed. Since
all communication is client-initiated, the algorithm
scales to any number of servers.

The rest of the paper is structured as follows. Section 2
defines the concept of loose time synchrony. Section 3 out-
lines the principles of object-based file systems, for which
section 4 presents our snapshot algorithm and section 5 dis-
cusses implementation-related issues. Section 6 presents an
evaluation that points out the performance characteristics
our our algorithm. Section 7 gives an overview of related
work, followed by a conclusion in section 8.

2. Loose Time Synchrony

Generally speaking, a consistent snapshot is a stable im-
age that reflects the state of a system at a certain point in
time. Assuming that St is the state at the point in time t, a
snapshot Σt0 taken at a point in time t0 comprises the state
St0 , i.e. latest state St that existed up to the time t0:

Σt0 : = {St0}
= {St : @St′(t < t′ <t0 ∧ St′ 6= St) ∧ t ≤ t0}

(1)

To overcome the lack of a global time in a distributed
system, we introduce the concept of loose time synchrony,
a time-based consistency model for snapshots that accounts
for drifting server clocks. We assume that each server s ∈ S
in the system has a local clock cs, where cs(t) denotes the
local time on s at the point in time t. These clocks shall
proceed at approximately constant clock rates close to real
time, as defined in the timed asynchronous distributed sys-
tem model [7]. We further require these clocks to be loosely
synchronized. This means that at any point in time t, an
upper bound ε is known for the clock drift between any two
servers s and s′:

|cs(t)− cs′(t)| ≤ ε (2)

A loosely time-synchronized snapshot ΣS
t0 taken at the

point in time t0 captures the local state of each server s ∈ S
at its local clock’s projection of the point in time t0, i.e. at
its local time cs(t0). ΣS

t0 is defined as follows, being Sst the
local state of a server s at the point in time t:

...

time

ns
time of snapshot

local state change

current server state

St 
n
3

1t

1s

2s

0s

0t - ϵ
2t 3t 4t 5t 6t 7t

0t ϵ+0t  

St 
n
7

St 
2
4 St 

2
5 St 

2
6

St 
1
1 St 

1
2

Figure 1: Illustration of loosely time-synchronized snapshot
consistency.

ΣS
t0 :=

⋃
s∈S

{Sst : @Sst′(cs(t) < cs(t
′) < cs(t0) ∧ Sst′ 6= Sst )

∧ cs(t) ≤ cs(t0)}
(3)

Since server clock times may diverge by at most ε at any
given point in time, ΣS

t0 is guaranteed to neither comprise
any local server states Sst′ for which a newer local state ex-
isted before t0− ε, nor any local server states that started to
exist after t0 + ε. Within the time frame [t0 − ε, t0 + ε], ε
sets an upper bound on the time span during which server
states are effectively captured in a snapshot. Point-in-time
snapshots can be regarded as a special case of loosely time-
synchronized snapshots with ε = 0.

Figure 1 illustrates the concept. Server s0 takes a snap-
shot ΣS

t0 at the point in time t0. On s1, server state was
changed to S1t1 at t1 and to S1t2 at t2, respectively. As both
points in time were before t0−ε, ΣS

t0 will contain S1t2 rather
than S1t1 . On s2, any of the three states may be part of
ΣS

t0 , depending on s2’s clock c2: if c2 runs fast by more
than t0 − t5 compared to c0, its projection of t0 will be in
[t0 − ε, t5], which causes S2t4 to be included; if it runs fast
by at most t0−t5 or slow by less than t6−t0, S3t5 will be in-
cluded accordingly; in any other case, S2t6 will be included.
On sn, Snt7 will never be included, regardless of cn’s drift,
as the corresponding state change occurred after t0 + ε.

3. File System Architecture

The target environment for our snapshot algorithm are
object-based [8, 22] file systems. Unlike traditional block-
based file systems, they do not rely on a centralized man-
agement of disk blocks. Instead, individual services called
object storage devices (OSDs) are responsible for the on-
disk layout of file content. They store file content in the
form of sequentially numbered byte ranges of the same size,



so-called objects. File system metadata, such as the direc-
tory tree, access rights or ownership information, is sepa-
rately managed by a metadata server (MDS). A client mod-
ule translates requests to the file system into requests to the
MDSs and OSDs. This design provides for a high degree
of scalability, as a growing need for access bandwidth and
storage capacity can be satisfied by adding new servers.

4. Object-based File System Snapshots

To implement loosely time-synchronized snapshots,
OSDs and MDSs have to keep track of changes to their indi-
vidual states and retain different versions of their data. Prior
to a state change, a server needs to record the current local
state and attach it to a new timestamped version.

The nature of a server’s state depends on the server type.
The state of an MDS is defined by its metadata, i.e. the set
of its volumes, each consisting of a directory tree with the
metadata of all its nested files, whereas the state of an OSD
is defined by its file contents, i.e. the set of all objects that
make up the data of its local files. Hence, we refer to a
timestamped version of a server’s state as a local metadata
snapshot in case of an MDS and a local file content snapshot
in case of an OSD, respectively.

State changes occur frequently across all servers and
only affect small parts of the file system’s state. For exam-
ple, writing a file may cause a single object to be changed on
an OSD and the file size to be updated on the MDS. Record-
ing all state changes across all servers would lead to a huge
number of local snapshots and thus a significant overhead
in maintaining these. We therefore decided to track state
changes (and thus take local snapshots) only in response to
specific events.

On MDSs, such events are limited to explicit snapshot
requests sent by users. On OSDs, we track close events
of files rather than write events. Besides reducing the
number of file content snapshots, this increases the chance
that individual files are captured in meaningful states. If file
content snapshots were taken regardless of whether files are
currently open for writing, snapshotted files could be in par-
tially written, unprocessable states. For similar reasons, var-
ious other versioning file systems also create file versions in
response to close events [26, 33, 32, 21].

In the following, we describe how snapshots of server
states are taken and how they are interrelated to implement
loose time synchrony.

4.1. Metadata Snapshots

A metadata snapshot on an MDS provides the initial ac-
cess point to a file system snapshot. Before file content can
be read on an OSD, file metadata needs to be accessed on

an MDS to determine the OSDs at which the file contents
are stored.

In most cases, metadata servers only make up a small
portion of all servers. To avoid bottlenecks in the meta-
data access path, it is of major importance that the over-
head caused by taking metadata snapshots is kept as low
as possible. We therefore assume that metadata servers are
capable of taking point-in-time snapshots of their complete
local metadata without severely affecting concurrent meta-
data accesses.

To maintain metadata snapshots, each MDS holds a
snapshot table TM ⊂ {(t,M)}, where t represents a times-
tamp and M a version of the local metadata. In response to
a snapshot request, a new version Mnow is captured, times-
tamped with the current time cMDS(tnow) obtained from
the MDS’ local clock cMDS , and added to TM .
tnow acts as the timestamp for the corresponding global

file system snapshot ΣS
tnow

. To ensure that ΣS
tnow

is stable
when being accessed, it is necessary to delay insertions in
TM by at least ε. Without this artificial delay, ΣS

tnow
could

be accessed before the tnow + ε, which might cause data
from different file content snapshots to be read. That’s be-
cause OSDs with clocks running slow compared to cMDS

may create new file content versions during the time inter-
val [tnow, tnow +ε] that will be included in ΣS

tnow
according

to the definition of loosely time-synchronized snapshots.
Figure 2 sketches the algorithm for metadata snapshots.

MDS::snapshot()
capture current metadata version Mnow

ts ← cMDS(tnow)
wait ε
TM ← TM ∪ {(ts,Mnow)}

Figure 2: Management of metadata snapshots

4.2. File Content Snapshots

To provide the basis for file content snapshots, OSDs
keep track of changes to their states at the granularity of
a file’s constituent objects. A simple way of doing this is
to maintain versions of each object. Thus, each OSD holds
a persistent set Of ⊂ {(n, v, d)} of versioned objects for
each file f , where n ∈ N is the object number, v ∈ N is a
version number for the object, and d points to the respective
data on disk. We use copy-on-write (COW) techniques to
preserve previous object versions when objects are written.
Instead of overwriting the data d of an object (n, v, d), d is
copied to a new data object dnew to which the changes δ are
persistently applied (denoted as d◦δ). dnew is then linked to
a new object (n, v+1, dnew) that is added to Of . Thus, ob-



ject version v remains accessible in its original state while
v + 1 reflects the latest version.

File content snapshots are persistently stored in a snap-
shot table Tf ⊂ {(t, V ) : V ⊆ Of} for each file f , where
t refers to a timestamp and V to a file version, i.e. a set of
object versions with different object numbers. In addition,
each OSD keeps track of the latest version Vf ⊆ Of of each
file f that reflects the file’s current state.

Since we decided to take file content snapshots only in
response to close events, it is not necessary to copy ob-
jects on every write. A new object version only needs to be
created if the object has not been written since the file was
opened for writing. To keep track of these objects, each
OSD holds a transient set of object numbers Nf ⊂ N for
each open file f . Depending on whether the object n to be
written is already contained in Nf , the latest object version
is either updated in place or copied prior to being written.

When a file is closed, the OSD creates a new file con-
tent snapshot by timestamping Vf with the current time
cOSD(tnow) on its clock and adding a corresponding snap-
shot table entry to Tf . Any transient open state of the file
including Nf is discarded afterward.

Figure 3 shows the algorithm for file content snapshots.

OSD::write(f, n, δ)
vmax ← max v : (n, v, d) ∈ Of

dold ← d : {(n, vmax, d)} ∈ Of

dnew ← dold ◦ δ
if n ∈ Nf then
Of ← Of ∪ {(n, vmax, dnew)} \ {(n, vmax, dold)}
Vf ← Vf ∪ {(n, vmax, dnew)} \ {(n, vmax, dold)}

else
Of ← Of ∪ {(n, vmax + 1, dnew)}
Vf ← Vf ∪ {(n, vmax + 1, dnew)} \ {(n, vmax, dold)}
Nf ← Nf ∪ {n}

fi

OSD::close(f)
Tf ← Tf ∪ {(cOSD(tnow), Vf )}
Nf ← ∅

Figure 3: Management of file content snapshots

4.3. Accessing File System Snapshots

We assume that files are accessed via path names. An
MDS can resolve the path names for its locally stored vol-
umes and retrieve the corresponding metadata, including
the OSDs on which the file contents are stored. Once a file
has been opened, its OSD is known to the client and can be
accessed repeatedly until the file is closed.

Files in a snapshot are accessed in a similar way, except

that a metadata snapshot is used by the MDS instead of the
current version of the metadata. To specify a metadata snap-
shot, users provide an access timestamp ta, which is sent to
the MDS together with a client request. ta defines an upper
bound for the timestamp ts assigned to the metadata snap-
shot that is supposed to be accessed. The MDS selects the
most recent metadata snapshot (ts,M) in TM that was - ac-
cording to its local clock - taken before ta and executes the
requested operation on M . Alternatively, snapshots could
also be named when being created and retrieved by name
when being accessed.

Reading content from a snapshotted file requires the cor-
rect file content version to be retrieved, subject to the def-
inition of loose time synchrony. Thus, a client receives ts
from the MDS when opening a file and sends it together
with the read request to the OSD that holds the file’s con-
tent. To ensure loose time synchrony, the OSD selects the
latest file content snapshot (t, V ) in Tf that is not older
than ts according to its local clock and returns the data
from the respective object in V . The fact that ε sets an up-
per bound on the asynchrony of server clocks ensures that
cOSD(t) ∈ [ts − ε, ts + ε] if ts = cMDS(t), which guar-
antees that V was neither outdated before t− ε, nor created
after t+ ε.

Figure 4 shows the algorithm for accessing snapshots.

MDS::select_snapshot(ta)
ts ← max t : (t,M) ∈ TM ∧ t ≤ cMDS(ta)
return ts

OSD::read(f, n, ts)
tr ← max t : (t, V ) ∈ Tf ∧ t ≤ ts
dr ← d : (tr, (n, v, d)) ∈ Tf

return dr

Figure 4: Reading data from a snapshot

5. Implementation

We implemented our snapshot algorithm in XtreemFS
[14], a distributed object-based file system. An XtreemFS
installation typically comprises a Directory Service (DIR)
at which all services and volumes are registered, a Metadata
and Replica Catalog (MRC) that acts as the MDS, as well
as a set of OSDs.

The MRC is backed by BabuDB [34], a key-value store
specifically designed for file system metadata management.
BabuDB supports instantaneous snapshots without block-
ing concurrent access. Its architecture is based on concepts
of LSM-trees [27] and Google Big Table [4]. Index struc-
tures are composed of an on-disk index and a stack of in-
memory trees, on top of which a new tree is added each



time a snapshot is taken. Only the topmost tree may be
changed, whereas the stack of trees below represents the lat-
est immutable snapshot. This architecture makes it possible
to take point-in-time snapshots of arbitrarily large indices
without interrupting access to the database.

OSDs store file content in their local file systems. Each
OSD maintains a directory per XtreemFS file, in which each
object version is stored as a separate file. Object and ver-
sion numbers are encoded in the file name. Snapshot ta-
ble and current file version are also stored as files in the
directory and updated when the file is closed and written,
respectively. Before objects of a file can be accessed, the
OSD checks if a transient open state exists for the file; if
not, metadata such as the snapshot table Tf and the latest
file version Vf are loaded into memory, where they reside
until the file is closed. To ensure that files are closed despite
client failures, there is no explicit close operation. Instead,
files are implicitly closed if no keep-open message or re-
quest to access an object were received for a certain time
span, which is usually no more than 60 seconds.

To allow for a clock synchronization between all OSDs
and MRCs, the DIR also acts as a time server. Different
mechanisms can be used to synchronize server clocks, in-
cluding NTP and GPS.

5.1. File Size Consistency

The current size of a file is part of the file’s metadata and
needs to be returned by the MRC in response to a stat
request. It is crucial that file sizes stored as part of the
metadata are as accurate as possible, as many applications
retrieve the current file size to determine the end of a file.
XtreemFS uses an asynchronous protocol to ensure consis-
tency of file content sizes and file sizes stored on the MRC
[35]. When the file content size on an OSD changes in re-
sponse to a write or truncate operation, the client re-
ceives the current file size from the OSD and reports it back
to the MRC.

If a snapshot is taken before a file size update has been
reported to the MRC, the file size stored with the metadata
snapshot may be outdated. Likewise, snapshots taken be-
tween updating a file size at the MRC and closing the cor-
responding file at the OSD may cause wrong file sizes to
be stored with the metadata. To circumvent the problem,
it would be possible to fetch all file content sizes from all
OSDs and attach the corrected ones to the metadata snap-
shot. As this would greatly reduce the speed and scalabil-
ity of snapshot creation, however, we decided to modify
the client-side implementation of stat instead, so that it
fetches the correct file content size from the OSD instead of
the MRC when invoked on a snapshot.

5.2. Cleanup

New file content snapshots are created on every close
but never get deleted. Even though only changed objects
of files require additional storage space, they will add up to
a considerable size over time. However, many file content
versions will never be accessed, as they are superseded by
later versions that are created before a new metadata snap-
shot is taken.

We implemented a cleanup tool to dispose of obsolete
file content versions, i.e. object versions that are not bound
to any existing metadata snapshot or part of a file’s current
version. With each cleanup run, the tool first fetches the
timestamps of all metadata snapshots from the MRC. Then,
it triggers a cleanup operation on all OSDs with these times-
tamps. Each OSD compares the timestamps to the ones in
the snapshot tables of its files, in order to discover those file
content snapshots that are superseded. A file content snap-
shot (t, V ) supersedes a file content snapshot (t′, V ′) with a
set of metadata snapshot timestamps T if the following con-
dition holds true: @tx ∈ T (t′−ε < tx < t+ε). In this case,
all object versions in V ′ may be deleted that are not con-
tained in any other version V ′′ of a snapshot (t′′, V ′′) ∈ Tf
or in Vf . As these object versions will never be accessed,
their deletion may take place in a fully asynchronous man-
ner.

6. Evaluation

We conducted four experiments to demonstrate the char-
acteristics of our snapshot algorithm and its implementation
in XtreemFS:

• the impact of COW and versioning on write through-
put,

• the impact of versioning and version lookups on snap-
shot read throughput,

• the additional latency of metadata operations experi-
enced when accessing snapshots,

• the additional storage consumption induced by object
versioning.

We used up to 16 nodes of a cluster connected by a giga-
bit Ethernet, each node being equipped with an 8-core 2.3
GHz CPU, 8 GB of RAM and a local hard drive. For the
hard drives, iostat indicated I/O throughput rates of up
to 90 MB/s.

6.1. Write Throughput

The first experiment points out the impact of file content
versioning and COW on the write throughput. We set up an
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Figure 5: Aggregated write throughput and object version count for object sizes of 4 kB, 32 kB, and 128 kB. The error bars
show the standard deviation of the results of 10 test runs.

XtreemFS installation consisting of an MRC, 5 OSDs, and
10 multi-threaded clients, each running on a separate cluster
node. To prepare the experiments, we created 20,000 files
consisting of a single object and assigned each to a random
OSD. We decided to only have one object per file in order to
maximize the number of file versions created and hence the
potential overhead caused by the versioning. Once all files
were created, the 10 clients performed write operations for
a duration of 60 seconds on randomly selected files. With
each write, object size - 1 bytes were written at off-
set 0, so that the complete object except for the last byte was
replaced. We kept the last byte to trigger the COW mech-
anism; otherwise, new versions would have been created
without copying. We measured the aggregated number of
write operations performed across all clients and counted
the total number of object versions (i.e. file versions) cre-
ated across all OSDs.

We conducted the experiment 10 times with varying ob-
ject sizes, as well as varying timeouts after which files were
closed on the OSDs and thus new versions were created. To
quantify the cost of COW and versioning, we repeated the
whole set of experiments twice, once with and once without
versioning enabled. We used the average values of 10 test
runs for our evaluation.

Figure 5 shows the number of operations per second and
the number of file versions created for different object sizes
and close timeouts. With versioning enabled, the diagrams
illustrate that longer close timeouts generally lead to smaller
numbers of versions and hence less COW operations, which
becomes visible in growing throughput rates. With a stan-

dard close timeout of 60 seconds, the performance impact
of COW becomes marginal (approx. 1%). However, even if
almost 15 times the initial number of versions are created,
the system can still sustain throughput rates of up to 40% of
the maximum rates attained without versioning (see figure
5a, close timeout: 1s).

6.2. Read Throughput

The second experiment shows the impact of file content
versioning on the read throughput. We used the same setup
as for the write throughput measurements. We populated an
empty file system with 20,000 object-size files, which we
repeatedly overwrote in order to trigger the creation of new
versions. After having overwritten each file 10 times and
waited for the close timeouts between two overwrites in or-
der to ensure that new versions were created, we triggered
a snapshot and repeatedly read randomly-selected files in
this snapshot for 60 seconds. We measured the aggregated
number of read operations performed across all clients. We
repeated this procedure 10 times, so that a total of 100 con-
tent versions per file were created. To compare our results,
we also made test runs without versioning enabled. We
conducted the experiment with varying object sizes and ran
each test 10 times.

Figure 6 illustrates the outcome. With growing numbers
of file versions, the graphs show a slight decrease in read
throughput. However, even with an object size of 4kB and
large numbers of snapshots, the decrease is only about 1%.
The performance penalty is caused by growing file version
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tables as well as numbers of objects per file, which leads to
longer version table load and object version lookup times.

Note that the total read throughput attained with large
object sizes is bound by the network and thus higher than
the accumulated disk I/O maximum across all OSDs of ap-
proximately 450 MB/s. This is because many read requests
did not hit the OSDs’ hard disks but were served from the
cache instead.

6.3. Metadata Access Latency

The third experiment quantifies the additional latency ex-
perienced when accessing snapshots, which originates from
the maintenance overhead of file and metadata versions. We
set up an XtreemFS installation with one MRC and OSD
and one single-threaded client on different cluster nodes.
To assess the latency impact of snapshots on metadata ac-
cesses, we populated a volume with 10,000 files, which we
randomly distributed across a tree of 500 directories with an
average depth of 4. We initially performed a test run before
snapshots were created, so as to be able to compare our re-
sults. Then, we repeated the procedure of taking a snapshot,
performing a test run on this snapshot, deleting the tree, and
creating the same tree again 10 times. With each test run,
we measured the average duration of 10,000 open, readdir
and stat operations.

The results are shown in figure 7. While the graphs
suggest that open has an almost negligible latency im-
pact when being invoked on a snapshot, readdir shows
a slightly increased latency with a growing number of snap-
shots. This comes from the MRC’s internal database design:
the larger the number of snapshots, the more index struc-
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Figure 7: Access latency of metadata snapshots. Snapshot 0
represents the first test run without snapshots, all other snap-
shots are numbered according to their chronological order.
The error bars show the standard deviation of the results of
10 test runs.

tures need to be merged to perform a readdir operation
[34]. The stat operation shows a substantially lower la-
tency without versioning, as no additional file size glimpse
on the OSD is needed.

6.4. Storage Consumption

The fourth experiment aims to determine the additional
storage consumption that is caused by file content version-
ing. We set up a complete XtreemFS installation on a single
node. We executed the Postmark file system benchmark
in order to generates a randomized mixed write/append
workload. We configured Postmark to initially create
1,000 files of an evenly distributed random size between
512 bytes and 1 MB, and to subsequently modify these files
by performing 10,000 random size append writes until the
maximum file size of 1 MB was reached. After having run
the benchmark, we measured the total amount of disk space
occupied by all files on the OSD, purged all previously cre-
ated versions by running our cleanup tool, and measured
the occupied disk space again. We repeatedly conducted
the experiment with different object sizes and repeated each
individual test run 10 times. We set the close timeout to one
second, so as to ensure that as many file versions as possible
were created.

Figure 8 shows the results for different object sizes of up
to 1,024 kB. Without cleaning up, larger object sizes lead to
a higher storage consumption, as the size of the data chunks
that need to be copied on write directly correlates with the
object size. While an object size of 1,024 kB leads to a sig-
nificant amount of data of more than 7.3 times the original
volume, object sizes of up to 128 kB limit the amount to
a factor of 1.6 and less. The final cleanup run removes all
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Figure 8: Total storage consumption after Postmark test
runs with different object sizes. The error bars show the
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file content versions but the latest one, as no metadata snap-
shots were taken while running the experiments. Thus, the
total data volume can be substantially lowered by selecting
appropriate object sizes and purging obsolete file content
versions on a regular basis.

7. Related Work

Most related work on file system snapshots refers to local
file systems. Various snapshotting file systems have been
developed throughout the last decades, such as ZFS [1],
ext3cow [28], WAFL [12], Episode [5], Spiralog [15] and
Plan-9 [29]. Most of them are block-based and use COW
techniques at inode and block level to retain prior versions
of files and directories. Versions are linked to snapshots by
means of locally assigned timestamps. Since all timestamps
are assigned by the same clock, point-in-time snapshots can
be created without the problem of clock synchrony.

Some distributed file systems support snapshots. Spi-
ralog [15] is a network file system built upon the log-
structured file system LFS [31]. Rather than maintaining
files and directories at fixed locations on disk, each LFS-
based server uses a log to record all changes. To take a
point-in-time snapshot, it is sufficient to adequately mark
the last log entry. However, the scale of a snapshot is lim-
ited to a single server, as each server holds its own log.
Similarly, AFS [13] provides snapshotting functionality at
volume granularity but does not allow volumes to be dis-
tributed across multiple servers. Frangipani [37], a dis-
tributed file system built on top of the Petal virtual disk
system [17] also supports snapshots but requires file sys-
tem activity to be interrupted during the process of taking a
snapshot. The Google File System [9] supports snapshots at
a large scale but does not guarantee point-in-time semantics
or upper bounds on the snapshot time span across multiple
servers.

The idea of using loosely synchronized clocks to imple-
ment distributed consistent snapshots has been described by
Moh and Liskov in the context of TimeLine [24], a dis-
tributed object-oriented database system. The algorithms
and concepts of TimeLine resemble the ones described in
this paper, but the main focus is on transactions. This leads
to a more complex less scalable snapshot protocol, as it re-
lies on communication between servers to disseminate in-
formation about snapshots.

An alternative approach to overcome the problem of
global time is to relax point-in-time consistency of snap-
shots to a causality-based consistency model. A snapshot
is causally consistent, also referred to as a consistent cut
[20], if it reflects the causal dependencies between all states
contained. Causal dependencies are generally defined via
messages exchanged between servers; a causally consistent
snapshot that comprises the state of a server B after having
received a message m from a server A must also comprise
a state in which A was after it sent m to B. Chandy and
Lamport introduced an algorithm that captures a causally
consistent snapshot of a distributed system with FIFO mes-
sage delivery guarantees [3]. Lai and Yang [16], Li et. al.
[18], Helary [11] and Mattern [19, 20] introduced alterna-
tive algorithms that do not have this FIFO restriction. How-
ever, such algorithms are difficult to implement in object-
based file systems. Their system model corresponds to a
fully connected graph of equivalent peers, whereas object-
based file systems rely on a client-server model with state-
less and only temporarily connected clients. This hinders
the propagation of snapshot-related information.

Moreover, causal dependencies that originate from com-
munication outside the file system cannot be tracked eas-
ily. For a local file system, Muniswamy-Reddy and Holland
solved this problem by monitoring all local communication
channels (including sockets, pipes, etc.) at operating system
level [25]. In an object-based file system, however, such an
approach would require a distributed monitoring infrastruc-
ture that spans all clients and servers, which would greatly
increase the complexity of the system and limit the applica-
bility of the approach.

8. Conclusion

We have presented a snapshot algorithm for large-scale
distributed object-based file systems. The algorithm guar-
antees loose time synchrony of snapshots, a time-based con-
sistency model that relaxes point-in-time constraints of lo-
cal snapshotting file systems to time span-based constraints.
Provided that an upper bound ε on the drift between all
server clocks is known, the algorithm makes it possible to
capture a stable image of a file system within a time span of
no more than ε, which can be limited to milliseconds with
protocols like NTP or GPS-synchronized clocks. All files



in a snapshot are guaranteed to reflect states in which they
were no more than ε before the snapshot was initiated. The
algorithm is agnostic to the scale of the file system in terms
of the number of servers, as it does not rely on communica-
tion between servers. Taking a snapshot is a non-inhibitory
metadata operation that has only a marginal impact on con-
current metadata accesses. Our experiments have demon-
strated that versioning causes a loss in read and write per-
formance of less than 1% under normal conditions.
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