
Striping without Sacrifices:
Maintaining POSIX Semantics in a Parallel File System

Jan Stender1, Björn Kolbeck1, Felix Hupfeld1

Eugenio Cesario2, Erich Focht3, Matthias Hess3,
Jesús Malo4, Jonathan Martí4

1Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany
2Institute High Performance Computing and Networks of the National Research Council of Italy (ICAR-CNR),

DEIS-UNICAL, P. Bucci 41-C, 87036 Rende, CS, Italy
3NEC HPC Europe GmbH, Hessbruehlstr. 21b, 70656 Stuttgart, Germany

4Barcelona Supercomputing Center (BSC), c/ Jordi Girona 31, Barcelona, Spain

Abstract
Striping is a technique that distributes file content over
multiple storage servers and thereby enables parallel ac-
cess. In order to be able to provide a consistent view
across file data and metadata operations, the file system
has to track the layout of the file and know where the
file ends and where it contains gaps. In this paper, we
present a light-weight protocol for maintaining a consis-
tent notion of a file’s layout that provides POSIX seman-
tics without restricting concurrent access to the file. In
an evaluation, we show that the protocol scales and elicit
its corner cases.

1 Introduction

Parallel file systems reach their superior I/O performance
and decent scalability with the help of striping. Instead
of storing a file only on one storage server, a parallel file
system splits up the data of a file into chunks and dis-
tributes these chunks across multiple storage servers (see
Fig. 1). Because clients can retrieve or calculate the lo-
cation of the chunks on storage servers, they can access
chunks directly in parallel.

With this direct, parallel access to storage, clients can
execute operations on the file in parallel on several stor-
age servers with the aggregated bandwidth and resource
capacity of all servers. The independence of storage re-
sources also helps when the system needs to be extended.
In order to handle increasing storage or bandwidth de-
mands, the parallel file system can be scaled by adding
more storage servers.

Ideally, a parallel file system would completely hide
the complexity of distributed storage and exhibit a be-
havior as it is specified by POSIX [11] and closely fol-
lowed by local file systems. Then users could run any
application on top of a parallel file system without any
modifications or caveats. The distributed nature of a par-
allel file system, however, requires file system designers

Figure 1: In parallel file systems, file data is split into
chunks which are distributed among a set of storage
servers.

to take means to ensure the consistency of the file ab-
straction as it is presented to clients.

A particular problem of striping is ensuring a consis-
tent view on the size of the file. When a file is split into
chunks, distributed over multiple servers and accessed
in parallel, the file size is conveyed by the length of the
last chunk of the file that defines the end-of-file (EOF)
marker. However, with multiple clients modifying the
chunks in parallel, no entity in the file system knows
the location of this last block and thus neither metadata
servers, storage servers nor clients know the current file
size [8, 12].

This problem becomes worse when files can contain
gaps. POSIX allows a client to seek to any offset, even
beyond EOF, and write data there. When a client reads
data from unwritten parts in-between that are within the
EOF bound, the file system has to return zeros. These
gaps in the file can be implemented efficiently as sparse
files: the file system does not allocate space for these

1



unwritten parts of the file and pads any reads with zeros
on demand. In order to correctly identify the absence of
file data on disk as a gap or the end of file, the file system
needs to know the current file size.

In lack of better techniques, current parallel file sys-
tems usually either sacrifice consistency of concurrent
file access in order to avoid this problem altogether, or
do not fully implement this case. Similar to networked
file systems like NFS or AFS, they require developers to
be aware of the idiosyncrasies of each file system.

In this paper we show that it is possible to support a
consistent notion of a file’s size even with sparse files,
without having to make sacrifices for consistency, con-
currency or performance. We present a striping protocol
for a parallel file system with semantics that are compat-
ible with local file systems, and which does not restrict
access or hinder scalability. Section 2 gives a detailed
treatment of the problem of striping in parallel file sys-
tems and names the challenges to solve. We then present
our protocol for maintaining a consistent view on file size
and data in Sec. 3, demonstrate its scalability in Sec. 4,
give an overview of how the problem is tackled by other
parallel file systems in Sec. 5 and conclude in Sec. 6.

2 File System Semantics

To simplify the development of applications for UNIX-
like operating systems, application developers expect the
behavior of file systems to be uniform and independent
of their underlying implementations. With the aim of
enforcing a uniform behavior across the multitude of dif-
ferent file systems, POSIX [11] defines certain semantics
that file systems have to offer.

In particular, applications can expect the file system
to provide a consistent notion of a file’s size, even under
concurrent access by multiple applications. This file size
has to be consistent to what has been actually written.
Primarily, this means that reads beyond the current end-
of-file (EOF) must be answered accordingly.

The size of a file is also present in the result of a stat
call. Although POSIX does not make statements about
the consistency of stat information and the actual lo-
cation of the end-of-file marker, applications and users
of the file system expect this information to be updated
at least periodically when the file is opened and under
change. For a closed file, the information should cor-
rectly reflect the file size as it is on disk.

POSIX (and all common local file systems) support
the creation of so-called gaps. Applications can seek
to arbitrary offsets in a file and write data there. Seeking
and writing is not restricted to the current bounds of the
file. A write beyond the current EOF creates a region be-
tween the former EOF and the write offset to which no

File

Process A writes 256 bytes
at offset 0 and offset 512

"hole" from
offset 256-511 

E
O

F

(a) Process A creates a gap

Process B reads at offset 
256 and at offset 768

File

E
O

F

(b) Process B reads data from the gap
and EOF.

Figure 2: (a) shows how process A creates a gap by writ-
ing 256 bytes at offset 0 and 512. (b) shows process B
reading 256 bytes from the same file at offset 256 (gap)
and 768 (EOF). Process B will receive a zero-padded
buffer of 256 bytes for the former, and an empty (zero
length) buffer for the latter read.

data has been explicitly written. Such a region is gener-
ally referred to as a gap (see Fig. 2(a)).

POSIX requires that data within a gap is read as zeros
(see Fig. 2(b)). This behavior can be implemented by
filling the gaps with zeros, or, more efficiently, by stor-
ing the file as a sparse file. For sparse files, the file sys-
tem does not allocate space for gaps, which creates holes
in the sequence of file blocks on disk. Any reads that en-
counter such a hole are padded with zeros. When reading
beyond EOF, POSIX requires that the range of requested
bytes is pruned such that only those bytes between the
read offset and the last byte of the file are returned. In
turn, an application is able to detect the EOF when it re-
ceives a smaller amount of bytes than it requested.

Ensuring a POSIX-compliant behavior with respect to
gaps and EOFs is not an issue in local file systems, be-
cause the access to file data and metadata can be serial-
ized without having a noticeable effect on performance.
In a parallel file system, however, file data is distributed
across multiple storage servers. This involves that in
some cases, file data stored on a single server is insuf-
ficient to distinguish between a gap and the EOF.

The problem is illustrated in Fig. 3. A process writes
to an empty file at two different offsets. The file system
client maps these writes to their corresponding chunks
and sends them to the responsible storage servers. With
a sparse file implementation, this operation necessarily
creates a hole at the storage server that did not receive
any data. If a second process tries to read data at an offset

2



inside the gap, the responsible storage server finds a hole
and needs to decide whether it should respond with zero-
padded or pruned data.

(a) Process A implicitly creates a hole.

(b) Process B reads data from the hole.

Figure 3: In (a), process A writes two separate blocks
of data to a file. The file system client translates these
blocks into chunks that reside on storage servers 1 and 3.
On storage server 2, no chunk is written, i.e. a hole exists.
In (b), Process B tries to read data from the same file at
the offset of the hole. Storage server 2 cannot decide if
this missing chunk indicates a gap or EOF.

3 Striping Protocol

To implement full POSIX compliance in presence of
gaps, the striping protocol has to make sure that a storage
server can distinguish between a hole and the EOF when
it receives a request for a missing chunk. To decide for
one of the two cases, storage servers require knowledge
about the current file size.

It is neither feasible to store the file size on a cen-
tral server, nor to maintain synchronously updated copies
of it across all servers. The former approach would re-
quire locking mechanisms that prevent multiple clients
from concurrently changing the file size, which greatly

restricts access parallelism on a single file. The lat-
ter approach would require some sort of synchroniza-
tion across all storage servers with each file size change,
which would significantly slow down frequent operations
like append writes.

With the aim of making append operations as efficient
as possible, our protocol relies on loosely-synchronized
file size copies maintained by each storage server. When
files grow, file size updates are disseminated between
storage servers in an asynchronous, best-effort manner.
When missing chunks are requested, storage servers at-
tempt to distinguish between holes and EOFs by means
of their local views on the current file size. Only if this
turns out to be impossible, which may be the case when
file size updates were lost or the requested chunk is out-
side the file boundaries, file size views have to be explic-
itly synchronized.

3.1 Definitions

We assume that the file system manages a set of files F .
Each file is striped across an individual, immutable set
of storage servers Sf = {s1, . . . , sn}. Per file f , each
storage server s ∈ Sf holds a mutable, potentially empty
set of locally managed chunks Cs,f = {cn, . . . , cm} that
contain the file data. Chunks are numbered; n and m re-
fer to chunk numbers that grow monotonously with their
offsets in f . We further assume that clients can deter-
mine the storage server that is responsible for a certain
chunk.

In gmaxs,f ∈ N, each server s locally stores infor-
mation about the globally largest chunk number of a file
f , i.e. the number of the last chunk of f . This number
reflects a server’s local view on the current file size.

3.2 Protocol

To simplify our presentation, we assume that read and
write operations always refer to entire chunks. We also
assume that the size of a file grows monotonously, i.e.
once created, a file will never shrink. How the protocol
can be enhanced to take care of arbitrary file size changes
will be described in Sec. 3.3.

Write. The write operation adds a new chunk to a
file, or changes the content of an existing chunk. When
receiving a write request, a storage server locally writes
the chunk. In a second step, it checks whether the pre-
viously written chunk is outside the former boundaries
of the file, according to gmax. If so, it communicates a
new value for gmax to all storage servers, which in turn
update their local gmax values if they are smaller. As
long as no update messages are lost, all storage servers

3



have a synchronized view on gmax as the number of the
last chunk of the file.

BEGIN write(f, cn)
– write the chunk

Cs,f ← Cs,f ∪ {cn}
– if a new chunk was created, send a gmax update message

– to all storage servers (including the local one)

IF n > gmaxs,f THEN
SEND SET_GMAX(f, n) TO Sf

END IF
END

UPON SET_GMAX(f, n)
BEGIN

– if a larger gmax was received, replace the current gmax

IF n > gmaxs,f THEN
gmaxs,f ← n

END IF
END

Read. The read operation returns the content of a
chunk. A storage server receiving a read request first
checks if the chunk is stored locally. If so, it simply re-
turns the data. Otherwise, it has to find out whether the
missing chunk corresponds to a gap, or is outside the cur-
rent file boundaries. As file sizes grow monotonously,
gmax always refers to a chunk number that defines a
lower bound for the file size. If the chunk number is
smaller, it is therefore safe to say that the missing chunk
is inside the file boundaries and refers to a gap. Other-
wise, it is necessary to ensure that gmax in fact refers
to the last chunk of the file, as gmax might be outdated
due to the fact that update messages may have been lost.
This is done by retrieving gmax values from all stor-
age servers holding chunks of the file via RPCs and re-
placing gmax with the largest such value. Finally, the
chunk number is compared to the previously synchro-
nized gmax; any larger chunk number refers to an EOF,
whereas any smaller chunk number refers to a gap.

BEGIN read(f, n)
IF cn ∈ Cs,f THEN

– chunk exists locally→ return chunk

RETURN cn

ELSE IF n < gmaxs,f THEN
– chunk does not exist locally, but chunk with higher

– numbers than n definitely exist→ gap, return padded

– chunk

RETURN zero-filled chunk
ELSE

– not clear if chunk with higher numbers than n exist:

– initiate a broadcast to update gmaxs,f

SEND GET_GMAX(f) TO Sf

M ← RECEIVE all responses FROM Sf

gmaxs,f ← max{m, m ∈M}
IF n > gmaxs,f THEN

– the chunk is the last one→ EOF

RETURN EOF
ELSE

– the chunk is not the last one→ gap, return zero-

– filled chunk

RETURN zero-filled chunk
END IF

END IF
END

UPON GET_GMAX(f)
BEGIN
RETURN gmaxs,f

END

Stat. The stat operation returns all metadata that is
associated with a file, which includes information about
the file’s size. This file size can be determined by fetch-
ing gmax values from all storage servers and selecting
the largest of them. This procedure can be avoided by
introducing a designated metadata server that is also re-
sponsible for tracking file sizes. Such a metadata server
can cache the current file size and serve stat requests
from its cache. Depending on the required consistency
between the file size returned by stat and the actual
end of file, it can be updated with gmax values either
synchronously with each write request, in certain peri-
ods, or when the file is closed.

3.3 Arbitrary File Size Changes
As part of the POSIX interface definition, the
truncate operation allows a process to explicitly set
the size of a file to an arbitrary value. Such an op-
eration violates our assumption that file sizes increase
monotonously. The problem can be solved by maintain-
ing a truncate operation counter for each file. We refer
to such a counter as a truncate epoch. The necessary en-
hancements to the protocol can be sketched as follows:

- For each file, one particular storage server (“trun-
cate server”) is designated for the execution of trun-
cate operations. This ensures an ordering of multi-
ple concurrently initiated truncate operations.

- In addition to the number of the last chunk, gmax
is enhanced by a truncate epoch.

- Each time a truncate operation is invoked, the trun-
cate server increments its truncate epoch and prop-
agates updates for the new gmax to all storage
servers. In contrast to the write operation, it waits
for acknowledgments from all servers. This ensures
that after the truncate operation has completed, all
servers are aware of the new truncate epoch.

4



- When receiving a gmax update, the local gmax
is replaced either if the received truncate epoch is
greater than the locally known one, or both epochs
are equal and the number of the last known chunk
has increased.

The protocol enhancement ensures that truncate
epochs as well as file sizes referring to a certain trun-
cate epoch grow monotonously. This relationship allows
for a correct ordering of gmax updates between storage
servers (and a metadata server, if necessary), which pre-
serves the guarantees our protocol offers with respect to
gaps and EOFs. Since truncate operations occur rather
infrequently [1, 6, 7], it is acceptable to execute them in
a coordinated fashion.

4 Evaluation

We demonstrate the scalability and the characteristics of
our protocol with two experiments.

The first experiment investigates the read and write
performance. We show the throughput observed by a sin-
gle client when reading and writing a 4GB file using one
to 29 storage servers.

In a second experiment, we elicit the corner cases; we
compare the duration of a regular read, the read of a gap
and the read beyond the end-of-file.

We implemented our striping protocol as part of
XtreemFS [4], a distributed, parallel, object-based file
system [5, 3]. File system metadata is stored on a ded-
icated metadata server, and chunks are stored on a set
of object storage devices (OSDs). A client component
translates application requests into sequences of interac-
tions with the metadata server and the OSDs.

Setup. For both experiments, we used a cluster of 30
nodes connected via 4xDDR InfiniBand. Each node has
two 2.5GHz Xeon CPUs with four cores, 16GB RAM,
and a local 80GB SATA hard disk.

We measured the hardware limits of the network and
hard disk with Iperf and IOzone, respectively. Iperf re-
ported a maximum TCP throughput between any two
nodes of approx. 1220 MB/s. For the local hard disks,
IOzone measured a read performance around 57 MB/s
and a write performance of 55 MB/s, when using syn-
chronous writes and direct I/O for reads.

The OSDs do not cache objects and use synchronous
writes and direct I/O to circumvent the system’s page
cache.

Experiment 1: Scalability. We used a client applica-
tion that first writes and then reads a 4GB file linearly

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

striping width/number of OSDs

th
o

ru
gh

p
ut

 in
 M

B
/s

Figure 4: Throughput for writing a 4GB file from a single
client on one to 29 OSDs.

with a chunk size of 1 MB. The application uses asyn-
chronous writes and read-ahead to achieve maximum
throughput with a single thread.

The throughput for writing a 4 GB file from a single
client node onto one to 29 OSDs is shown in Figure 4.
The throughput with a single OSD is approx. 40 MB/s
and is limited by the maximum bandwidth of the local
hard disk. The maximum throughput of the network is
reached with 27 OSDs; as expected, adding more OSDs
does not further increase the throughput.

Reading (Fig. 5) shows a similar linear increase until
the maximum read throughput of the client application
is reached at approx. 740 MB/s. As the limiting fac-
tor, we identified our single threaded HTTP parser which
was not able to parse all responses with the maximum
throughput of the network.

The experiment verified that our protocol and imple-
mentation scale with an increasing number of OSDs.

Experiment 2: Request Duration. A second client
application is used which first writes chunks no. 1 and
3 and then requests data for chunks no. 2 (a gap), 3 (reg-
ular data chunk) and 4 (beyond EOF). We measured the
duration of these read requests without striping and with
striping over 5, 15 and 25 OSDs.

The results in Figure 6 illustrate the characteristics of
our protocol as expected. Reads of gaps and of regu-
lar chunks take approximately the same amount of time.
Reading beyond the end-of-file takes the longer the more
OSDs have to be queried for the file size, since overhead
is caused by sending gmax RPCs to a growing number
of OSDs.

Each request contains a list of all OSDs used for strip-

5



0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

striping width/number of OSDs

th
or

ug
hp

ut
 in

 M
B

/s

Figure 5: Throughput for reading a 4GB file from one to
29 OSDs with a single client.

ing. This information is necessary so that an OSD can
contact all other OSDs to query them for the file size.
The longer the list, the more addresses of OSDs have to
be parsed and resolved. This explains the slight increase
in the duration of regular reads of both gaps and data with
a growing number of OSDs.

5 Related Work

The problem of ensuring a consistent notion of a file’s
size in presence of gaps and concurrent access is com-
mon to all parallel file systems and an important element
of POSIX compliance. However, the available literature
is light on details on how this problem has been handled
in various file systems.

GPFS [8] is a block-based cluster file system that co-
ordinates parallel and concurrent access to shared disks
(such as a SAN). Because of the passive storage devices,
clients are key elements of the architecture and partic-
ipate actively in coordinating concurrent accesses. For
each file, one of the clients acts as a dedicated metanode
and is exclusively allowed to change the file’s metadata
(that includes the file size) on the shared disks.

Theses file size updates are tightly coupled with file
locks to ensure a consistent view on the file size. Nor-
mally, all clients have a shared write lock and are allowed
to change the file. Any changes that affect the file size
are cached locally and sent to the metanode periodically.
If a client operation relies on a correct file size, i.e. a
stat call or a read past the EOF, the client has to ask
the metanode for the definitive file size. The metanode
in turn revokes the shared write lock, which triggers all
other clients to send their pending file size updates. The

read gap read data read beyond 
EOF

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5
1 OSD

5 OSDs
15 OSDs

25 OSDs

re
qu

es
t 

d
ur

a
tio

n 
in

 m
s

Figure 6: Duration of reading data, a gap or beyond the
end-of-file on one, five, 15 and 25 OSDs.

metanode can now infer the correct file size, answer the
query and allow the client to proceed.

With this protocol, GPFS is able to guarantee POSIX
compliant behavior. In addition to the query for the cur-
rent file size, file-size sensitive changes require a presum-
ably complex lock revocation procedure.

The Lustre file system is structured as an object-based
architecture. Its storage servers take an active role in the
file system architecture and contain dedicated disks. Un-
fortunately, its handling of file size-relevant updates is
not well covered in the literature. The existing docu-
mentation [10] suggests that the metadata server hands
out EOF locks to clients that convey the right to define
the file size. When a storage server needs file size in-
formation, it checks whether one of its client holds the
EOF lock and asks it for the file size. If no such lock ex-
ists, the information in the metadata server is up-to-date
and the storage servers resort to its information. Like
GPFS, Lustre implements POSIX compliant handling of
file size and couples it with a lock mechanism. The re-
sponsibility of a single client for defining the end of file
can become a performance bottleneck.

PVFS [2] is a parallel file system for high-performance
computing applications. Its file size handling is not well
documented either. It seems that PVFS clients decide
locally whether unfulfilled read requests mean a gap or
the end of file. The client first estimates a local minimum
file size, e.g. by checking for existing data in subsequent
objects. If that fails, it queries the metadata server for an
up-to-date file size. The problem of outdated information
on the metadata server seems not to be handled. With this
protocol, PVFS might not be able to give the guarantees
that are required by POSIX.

6



CEPH [12] is an object-based parallel file system. The
file size, along with other metadata is separated from file
content and stored on a dedicated metadata server. Be-
cause file data and metadata are separated, changes to the
file size have to be propagated from the storage servers
to the metadata server. When opening the file, a CEPH
client retrieves the current file size from the metadata
server and caches it. Any file size changes are reported
back to the metadata server when the client closes the
file. All changes to the file size that take place between
opening and closing a file are applied to the cached value,
so the client can tell an EOF apart from a gap by check-
ing the cache.

With respect to gaps and EOFs, correctness is only
guaranteed as long as no more than one client at a time
has an open state for the file. Thus, developers must en-
sure that a file is properly closed before being opened by
another process. Enforcing such a behavior to an applica-
tion does not comply with POSIX file system semantics.

DPFS [9] is a parallel file system that supports differ-
ent striping patterns. It uses an SQL database for storing
the metadata. The transaction mechanism of the SQL
database is used to handle all concurrency issues, includ-
ing the updates of file sizes, and is likely to limit the per-
formance.

6 Conclusion

We have presented a light-weight protocol that coordi-
nates file size updates among storage servers in a paral-
lel file system. The protocol ensures POSIX-compliant
behavior in the face of concurrent accesses to a sparse
file by allowing storage servers to distinguish between
gaps and the end of file. With this protocol, we have
tried to show that POSIX compliance for sparse files is
possible with a relatively simple mechanism. Our experi-
ments show that the protocol allows a parallel file system
to scale freely without sacrificing performance or access
semantics.

The protocol does not make use of any client-side
locks that are usually required for a client-side caching
mechanism. As these locks restrict the degree of access
parallelism on a file for the sake of reaching a better per-
formance on a single client, we assume that the striping
protocol can be further optimized for this case.

Acknowledgments

This work was supported by the EU IST program as
part of the XtreemOS project (contract FP6-033576), by
the D-Grid grant of the German Ministry of Science of
Technology (BMBF) and by the Spanish Ministry of Sci-
ence and Technology under the TIN2007-60625 grant.

XtreemFS is a collaborative effort of the XtreemOS data
management work package, and we thank all our part-
ners for their valuable contributions.

References

[1] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff, and J. K. Ousterhout. Measurements of a
distributed file system. SIGOPS Oper. Syst. Rev.,
25(5):198–212, 1991.

[2] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur. PVFS: A parallel file system for linux
clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, pages 317–327, At-
lanta, GA, 2000. USENIX Association.

[3] M. Factor, K. Meth, D. Naor, O. Rodeh, and
J. Satran. Object storage: The future building block
for storage systems. In 2nd International IEEE
Symposium on Mass Storage Systems and Tech-
nologies, 2005.

[4] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender,
E. Focht, M. Hess, J. Malo, J. Marti, and E. Ce-
sario. XtreemFS: a case for object-based storage in
Grid data management. In 3rd VLDB Workshop on
Data Management in Grids, co-located with VLDB
2007, 2007.

[5] M. Mesnier, G. Ganger, and E. Riedel. Object-
based storage. IEEE Communications Magazine,
8:84–90, 2003.

[6] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A.
Kunze, M. Kupfer, and J. G. Thompson. A trace-
driven analysis of the unix 4.2 bsd file system.
SIGOPS Oper. Syst. Rev., 19(5):15–24, 1985.

[7] D. Roselli, J. R. Lorch, and T. E. Anderson. A com-
parison of file system workloads. In Proceedings of
the 2000 USENIX Conference, pages 41–54, June
2000.

[8] F. Schmuck and R. Haskin. Gpfs: A shared-disk
file system for large computing clusters. In FAST
’02: Proceedings of the 1st USENIX Conference on
File and Storage Technologies, page 19, Berkeley,
CA, USA, 2002. USENIX Association.

[9] X. Shen and A. Choudhary. A high-performance
distributed parallel file system for data-intensive
computations. J. Parallel Distrib. Comput.,
64(10):1157–1167, 2004.

[10] Sun Microsystems, Inc. The Lustre Operations
Manual, 2008.

7



[11] The Open Group. The Single Unix Specification,
Version 3.

[12] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.
Long, and C. Maltzahn. Ceph: A scalable, high-
performance distributed file system. In OSDI,
pages 307–320, 2006.

8


