
Striping without Sacrifices: 
Maintaining POSIX Semantics in a 
Parallel File System

Jan Stender
Björn Kolbeck

Zuse Institute Berlin



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 2

Outline

● Introduction

● Problem Description

● Striping Protocol

● Summary



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 3

Introduction

● Striping increases the performance of file systems

– a single file is split up in
chunks scattered across
multiple storage resources

– chunks can be accessed in
parallel

– a single file can be accessed
with the accumulated
performance of multiple
storage resources

● Parallel file systems have
distributed storage
resources

– chunks reside on different
storage servers



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 4

Introduction

● General-purpose file systems are expected to be 
POSIX-compliant

– well-defined interfaces and behavior

– no specific API, applications run w/o being modified or re-
linked

– POSIX-compliant file systems can be used by any application

● POSIX defines how read and write operations behave 
in certain corner cases:

– ''gaps''

– reading beyond EOF



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 5

Introduction

● Gaps

– writes at an offset beyond EOF implicitly creates a gap, i.e. a 
region of missing data

– reading bytes in a gap
must return binary zeros

● EOF

– reading a range of bytes
to an offset beyond EOF
must prune the resulting
buffer (less bytes than
requested)



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 6

Problem Description

● Problem: How to distinguish 
between a gap and the EOF in a 
parallel file system?

– process A creates new file by writing
chunk 1 and 3

– chunk 2 is not explicitly filled with 
data

– process B requests missing chunk 2

– storage server 2 must decide whether to 
respond with an empty buffer (EOF) or a 
zero-padded buffer (gap)



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 7

Problem Description

● Basic idea: provide for a consistent view on the file 
size among all storage servers

● However, ...

– synchronizing each append-write operation across all 
storage servers is too expensive

– a central server that stores the file size would be a 
bottleneck



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 8

Striping Protocol

● Solution: decentralized, loosely-synchronized 
approach

– storage servers disseminate and keep track of hints about 
the current file size (i.e. the globally last chunk number)

– if a requested chunk is missing, these hints are used to 
decide between a gap and an EOF

– if no decision is possible,
the file size is explicitly
synchronized by fetching
the last chunk number
from all storage servers

– implicit assumption:
files grow monotonously



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 9

Striping Protocol

start

chunk no. 
> last known

one? yes

no

stop

write chunk
locally

send new chunk
number to remote

servers

start

chunk no. 
> last known

one? yes

no

stop

receive chunk
number

replace largest
known chunk no.
with received one

● Write



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 10

Striping Protocol

● Read
start

chunk present?
yes

no

stop

read chunk locally

return chunk

return gap
last known

chunk number
> requested

one? 

yes

no

fetch last known chunk
numbers from all remote
servers, replace local one
with greatest if necessary

last known
chunk number
> requested

one? 

yes

return gap

no
return EOF



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 11

Striping Protocol

● Truncate
– problem: violates our monotony assumption on the file size

– solution: ''truncate epochs''

– file size hints consist of chunk number + epoch number

– a designated server is responsible for truncate operations

● it increments the epoch number

● it synchronously updates the file size + epoch on all remote servers

– a server receiving a file
size hint updates its local
chunk and epoch number if

● the received epoch
number is greater than
the local one

● both epoch numbers are equal
and the received chunk number
is greater than the local chunk
number



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 12

Experimental Results

● reads and append writes
scale linearly

● low latency for reading gaps
and data, as no file size
synchronization is necessary

● higher latency for reading
beyond the EOF, due to
file size synchronization

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

0

200

400

600

800

1000

1200

1400

striping width/number of OSDs

th
o

ru
g

h
p

u
t 

in
 M

B
/s

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

0

100

200

300

400

500

600

700

800

striping width/number of OSDs

th
or

ug
hp

ut
 in

 M
B

/s

read gap read data read beyond 
EOF

0.0

5.0

10.0

15.0

20.0

25.0 1 OSD
5 OSDs
15 OSDs
25 OSDs

re
q

u
e

s
t d

u
ra

tio
n

 in
 m

s



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 13

Summary

● The suggested protocol exhibits a POSIX-compliant 
behavior while ensuring scalability

● Frequent operations are fast

– append and random writes

– reads in file bounds

● The protocol does not enforce locking

– parallel access is possible by multiple clients

● The protocol inherently supports sparse files



Björn Kolbeck, Jan Stender · LASCO '08, Boston, 23-JUN-2008 · Page 14

Thank you!

Questions?

Funded by the European Commision's FP6 programme
under contract #FP6-033576


