ceS8s,
.:eaii’t\i.
-l ,‘
L]

XTREEMFS S35

Striping without Sacrifices:
Maintaining POSIX Semantics in a
Parallel File System

'T[E Zuse Institute Berlin

Outline

XTREEM

Introduction

Problem Description

Striping Protocol

Summary

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 2

Introduction XTREEMFS 355}

« Striping increases the performance of file systems

- a single file is split up in Brocess

chunks scattered across

multiple storage resources i‘”r““’ M tou e
- chunks can be accessed in b

parallel —

client splits file into chunks

- asingle file can be accessed ¢ v v v

with the accumulated Chunk 1 | [Chunk2 | [Chunk3 | |Chunk 4

256kB 256kB 256kB 256kB

performance of multiple

sto rage resources ;l;;riliticcﬁldbssgarallul
« Parallel file systems have
distributed storage

re S O U rC e S storage servers

- chunks reside on different
storage servers

eremOé‘_A Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 3

Introduction

XTREEM

adoeton

Ll .I' iy
S TA

 General-purpose file systems are expected to be
POSIX-compliant

- well-defined interfaces and behavior

- no specific API, applications run w/o being modified or re-
linked

- POSIX-compliant file systems can be used by any application

« POSIX defines how read and write operations behave
In certain corner cases:

_ Ilgapsll
- reading beyond EOF

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 4

i
wg t 0
LI

Introduction

XTREEM

[} .'.‘ 1"""-'
by By,
b ..l t'."'::'ﬂ

 Gaps

- writes at an offset beyond EOF implicitly creates a gap, i.e. a
region of missing data

- readinag bvtes in a aa Process A writes 256 bytes
must rgtu};n bina rygzeFl)‘os at offset O and offset 512

+ EOF l i
e B C

buffer (less bytes than S '
requested) gap" from
offset 256-511

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 5

LLA
i, '
P
Ll ‘?;_-ﬁ‘

Problem Description

XTREEM ~‘§b
e Problem: How to distinguish

between a gap and the EOF in a
parallel file system?

Process A

wriles 256k at oflset 0
and 256k at offset 512k

L7

I i
- process A creates new file by writing i Ltion i e o s
chunk 1 and 3

v
- chunk 2 is not explicitly filled with
data

256kB

client sends parallel
wrile requests
Process B

<l <l
b e
— —
i i
2 3 4

i reads 256k at offset 256k

sLorugc =BT VETS
Client - process B requests missing chunk 2
requests matching .
Chunk 2 - storage server 2 must decide whether to
— respond with an empty buffer (EOF) or a
= | zero-padded buffer (gap)
= =
T I
1 2 3 4

aneemog_ A
Tl

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 6

Problem Description

« Basic idea: provide for a consistent view on the file
size among all storage servers

 However, ...

- synchronizing each append-write operation across all
storage servers is too expensive

- a central server that stores the file size would be a
bottleneck

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 7

Striping Protocol XTREEMFS 35

« Solution: decentralized, loosely-synchronized

approach

storage servers disseminate and keep track of hints about
the current file size (i.e. the globally last chunk number)

If @ requested chunk is missing, these hints are used to
decide between a gap and an EOF

if no decision is possible, [chunk 6

the flle S|Ze |S exp“Cltly Chunk 1 Chunk 2 Chunk 3 Chunk 4

synchronized by fetching N S >

the last chunk number

from all storage servers — = &
I 2 3 4

implicit assumption:
files grow monotonously s ek

1 ..
_ Server | knows that the missing
largest file size _
hint seen locally: 6 chunk 5 refers to a gap.

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 8

Striping Protocol

« Write

write chunk
locally

chunk no.
> |last known
one?

XTREEMFS ‘:'55:,

send new chunk
number to remote
servers

receive chunk
number

chunk no.
> |last known
one?

replace largest
known chunk no.
with received one

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 9

Striping Protocol

XTREEMFS 3533

e Read v

read chunk locally

start

chunk present?

last known

yes % return chunk '

yes

chunk number
> requested
one?

fetch last known chunk
numbers from all remote
servers, replace local one
with greatest if necessary

» return gap '

return gap

last known
chunk number
> requested
one”?

return EOF

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 10

Striping Protocol XTREEMFS 3555

e Jruncate

- problem: violates our monotony assumption on the file size
- solution: "truncate epochs"

- file size hints consist of chunk number + epoch number

- a designated server is responsible for truncate operations

« it increments the epoch number

« it synchronously updates the file size + epoch on all remote servers

- a server receiving a file Process A | s
size hint updates its local | | Chud&o

chunk and epoch number if Chunk I | [Chunk2 | [chunk3 | [cns |

. truncate to
« the received epoch 3 chunks

number is greater than
the local one

« both epoch numbers are equal
and the received chunk number

. last local chunk: 1 trucate call,
is greater than the local chunk R ew epoch=
number hint seen locally: (3, 2)

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 11

&g, ~
Lt
o

Experimental Results XTREEM

[} .'.‘ 1"""-'

By, 0y, Yy

b ".l llc':':?
I

« reads and append writes
scale linearly 2 1000
 low latency for reading gaps £ ™
and data, as no file size g
synchronization is necessary ..

° h | g h e r I a te n C y fo r re a d I n g 0 ‘1 é ; 4‘1 ; e‘s ; é ;1‘01‘11‘21‘31‘41‘51‘61‘71‘81‘92‘02‘12‘22‘32‘42‘52‘62‘72‘82‘9
beyo n d th e EO F ’ d u e to striping width/number of OSDs
file size synchronization

_ S BN N o -3
700 LA L AL S
@
25.0 W 10SD m 600
H 50SDs = /
[1150SDs o
M 250SDs = 500
g 20.0 a
c _% 400
S
[=
S 150 S 300
T E=
S 200
°
g 100 100
=
8
= — OW T T T 7T 7T 177171
5.0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0.0 striping width/number of OSDs
read gap read data read beyond
EOF

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 12

Summary

XTREEM

 The suggested protocol exhibits a POSIX-compliant
behavior while ensuring scalability

 Frequent operations are fast

- append and random writes
- reads in file bounds

 The protocol does not enforce locking

- parallel access is possible by multiple clients

 The protocol inherently supports sparse files

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 13

adoeton

L .l"’
S TA

]

Py
2880t
'..’."

Thank you!

Questions?

Funded by the European Commision's FP6 programme

under contract #FP6-033576

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 14

