
Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck1

Loosely Time-Synchronized Snapshots in 
Object-Based File Systems

Jan Stender, Mikael Högqvist, Björn Kolbeck
Zuse Institute Berlin



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 2

Outline

Motivation

Problem Description

System Architecture

Algorithm

Evaluation

Conclusion



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 3

Motivation

The “digital universe” is expanding

science and industry generate and store huge data volumes

large-scale distributed data management gaining in importance

Data needs to be protected

from failures of servers and storage devices,

corruption,

accidental deletions,

virus infections, etc.



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 4

Problem Description

Backups provide for data safety

roll-backs and recovery of previous versions

Typical backup approach:

take snapshot

copy snapshot to backup device

… but snapshots need to capture all data in a 
consistent state at a certain point in time!

despite data being physically distributed

despite data being concurrently modified

despite lack of a global time



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 5

System Architecture

Object-based storage

widely-used design pattern for parallel 
and distributed file systems

metadata servers + intelligent object 
storage devices

file content split into objects

easy to scale out by adding new servers

Object-based file systems

examples: Lustre, Panasas Active Scale



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 6

File System Snapshots

Stable image of the file system at a given point in 
time

state: all files and directories (data + metadata)

latest state before the point in time

immutable, regardless of future changes



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 7

Algorithm: Assumptions

Servers clocks “loosely” synchronized

ϵ bounds clock drift across all servers

enforced with NTP or GPS



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 8

Algorithm: Loose Time Synchrony

“Loose time synchrony”

relaxes point-in-time guarantees to time span guarantees



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 9

Algorithm: Taking a Snapshot

Servers take local snapshots

MDS: at volume granularity, in response to snapshot requests

OSD: at file granularity, in response to close events



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 10

Algorithm: Accessing a Snapshot

Accessing a snapshot:



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 11

Evaluation

write (128k objects)

read



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 12

Evaluation (2)

metadata



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 13

Conclusion

Snapshots

can be accessed ϵ after creation (milliseconds and less)

can be taken on-line, w/o disrupting normal file system usage

do not require dedicated communication

offer unlimited scalability wrt. the number of servers

are only partially affected when single servers fail



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 14

Thank You!

Questions?

This work was supported by the EU IST program as part 
of the XtreemOS project (contract FP6-033576) and the 
Contrail project (contract FP7-257438).



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 15

Implementation (1)

Metadata versioning:

point-in-time snapshots at DB level

FS snapshot request triggers MD snapshot

File content versioning:

copy-on-write (COW)

object versioning

new object versions

generated with write requests

only if object hasn't been written yet since file was opened

new file versions

generated with close requests



Loosely Time-Synchronized Snapshots · Jan Stender, Mikael Högqvist, Björn Kolbeck 16

Implementation (2)

Implemented in XtreemFS

MDS: BabuDB for metadata snapshots

OSDs: COW support

Clock synchrony

NTP, GPS; default: simple NTP-like protocol

File size consistency

“OSD glimpse” to determine correct size of a snapshotted file

Cleanup

many file versions are superseded by later versions

cleanup tool removes obsolete object versions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

