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Motivation

The “digital universe” is expanding

science and industry generate and store huge data volumes

large-scale distributed data management gaining in importance

Data needs to be protected

from failures of servers and storage devices,

corruption,

accidental deletions,

virus infections, etc.
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Problem Description

Backups provide for data safety

roll-backs and recovery of previous versions

Typical backup approach:

take snapshot

copy snapshot to backup device

… but snapshots need to capture all data in a 
consistent state at a certain point in time!

despite data being physically distributed

despite data being concurrently modified

despite lack of a global time
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System Architecture

Object-based storage

widely-used design pattern for parallel 
and distributed file systems

metadata servers + intelligent object 
storage devices

file content split into objects

easy to scale out by adding new servers

Object-based file systems

examples: Lustre, Panasas Active Scale
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File System Snapshots

Stable image of the file system at a given point in 
time

state: all files and directories (data + metadata)

latest state before the point in time

immutable, regardless of future changes
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Algorithm: Assumptions

Servers clocks “loosely” synchronized

ϵ bounds clock drift across all servers

enforced with NTP or GPS
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Algorithm: Loose Time Synchrony

“Loose time synchrony”

relaxes point-in-time guarantees to time span guarantees
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Algorithm: Taking a Snapshot

Servers take local snapshots

MDS: at volume granularity, in response to snapshot requests

OSD: at file granularity, in response to close events
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Algorithm: Accessing a Snapshot

Accessing a snapshot:
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Evaluation

write (128k objects)

read
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Evaluation (2)

metadata
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Conclusion

Snapshots

can be accessed ϵ after creation (milliseconds and less)

can be taken on-line, w/o disrupting normal file system usage

do not require dedicated communication

offer unlimited scalability wrt. the number of servers

are only partially affected when single servers fail
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Thank You!

Questions?

This work was supported by the EU IST program as part 
of the XtreemOS project (contract FP6-033576) and the 
Contrail project (contract FP7-257438).
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Implementation (1)

Metadata versioning:

point-in-time snapshots at DB level

FS snapshot request triggers MD snapshot

File content versioning:

copy-on-write (COW)

object versioning

new object versions

generated with write requests

only if object hasn't been written yet since file was opened

new file versions

generated with close requests
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Implementation (2)

Implemented in XtreemFS

MDS: BabuDB for metadata snapshots

OSDs: COW support

Clock synchrony

NTP, GPS; default: simple NTP-like protocol

File size consistency

“OSD glimpse” to determine correct size of a snapshotted file

Cleanup

many file versions are superseded by later versions

cleanup tool removes obsolete object versions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

