
XtreemFS: high-
performance network file
system clients and servers
in userspace

Minor Gordon, NEC Deutschland GmbH

mgordon@hpce.nec.com

Page 2

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

Why userspace?

❚ File systems traditionally implemented in the kernel for
performance, control

❚ Some advantages doing things in userspace:

❚ High-level languages: Python, Ruby, et al. for prototyping, then
C++ (→ tool support, reduced code footprint, etc.)

❚ Protection: kernel-userspace bridges (Dokan, FUSE) are fairly
stable, file system can crash without requiring a reboot

❚ Porting: one common kernel->userspace upcall interface
(FUSE) on Linux, OS X, Solaris

❚ Acceptable performance for network file systems

❚ Often bound to disk anyway

Page 3

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

Overview

❚ Implementing file systems in
userspace

❚ Handling concurrency

❚ XtreemFS: an object-based
distributed file system

Page 4

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

Implementing file systems in
userspace

static int
mkdir(
 const char* path,
 mode_t mode
);

static int
DOKAN_CALLBACK
CreateDirectory(
 LPCWSTR FileName,
 PDOKAN_FILE_INFO
);

❚ ~ VFS functions

❚ FUSE kernel module translates
operations to messages, writes them
on an FD

❚ FUSE userspace library reads the
messages, calls the appropriate
function, returns the result as a
message

❚ Callbacks must be thread-safe,
completely synchronously.

❚ Dokan (Win32) calls can be
translated, sans sharing modes.

Page 5

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

Abstract away

bool Volume::mkdir(
 const YIELD::Path& path,
 mode_t mode
)

{
 mrc_proxy.mkdir(
 Path(this->name,
 path), mode);

 return true;
}

❚ Yield C++ library
for minimalist
platform primitives,
concurrency (next
section), IPC

❚ Auto-generate
client-server
interfaces from IDL;
make synchronous
proxy calls that do
message passing
under the hood.

Page 6

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

Handling concurrency

❚ Possible approaches:

1) Let the (multiple) FUSE threads execute all of the logic
of the system

 Advantages: simple at the outset

 Disadvantages: have to lock around shared data
structures, error prone and code becomes a mess

2) Have some sort of event loop

 Advantages: obviates need for locks

 Disadvantages: code becomes even uglier, even
faster; hard to parallelize

Page 7

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

Stages

❚ Decompose file system logic into stages that pass
messages via queues.

❚ A stage is a unit of concurrency: two stages can
always run concurrently on two different physical
processors.

❚ Single-threaded stages: shared data structures
encapsulated by a single serializing stage – no
locking

❚ Most stages should be thread-safe (otherwise
Amdahl's law comes into play).

❚ A stage-aware scheduler can exploit the nature
of stages as well as their communications
pattern (the stage graph, similar to a process
interaction graph).

FUSE

Volume

Req

MRC Proxy
Req

Page 8

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

XtreemFS

❚ EU research project

❚ Wide-area file system with RAID, replication

❚ Aim for POSIX semantics, allow per-volume
relaxation

❚ Everything in userspace

❚ Test new ideas with minimal
implementation cost

❚ Goal: usable file system that performs within
an order of magnitude of kernel-based network
file systems

Page 9

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

XtreemFS: Features

❚ Staged design

❚ Efficient key-value store for metadata

❚ Based on Log-Structured Merge Trees

❚ Simple implementation (~ 5k SLOC)

❚ Snapshots

❚ Striping

❚ WAN operation

❚ Distributed replicas held consistent

❚ Automatic failover

❚ Security with SSL, X.509

Page 10

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

XtreemFS: Stages

FUSE

DIR Proxy

XtreemFS Volume

Req

MRC Proxy
Req

File Cache
Req

OSD Proxy
Req

❚ Client

❚ Servers

❚ Directory (DIR)

❚ Metadata
catalogue (MRC)

❚ Object store
(OSD)

Page 11

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

XtreemFS: Stages cont'd

Advantages of staged design in XtreemFS:

❚ No locking around shared data structures like caches

❚ Other stages can be multithreaded to increase concurrency or
offset blocking

❚ Gracefully degrade under [over]load with queue backpressure
(original raison d'etre of stages in servers)

❚ Userspace scheduling

❚ Per-stage queue disciplines like SRPT

❚ Stage selection (CPU scheduling)

❚ Increase cache efficiency (Cohort scheduling, my research)

Page 12

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

XtreemFS: local reads

read reread reverse read stride read random read p read
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

NFS, O_DIRECT
NFS
ext4, O_DIRECT
ext4
XtreemFS
XtreemFS clienrel

Page 13

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

XtreemFS: local writes

write rewrite random write pwrite
0

50000

100000

150000

200000

250000

NFS, O_DIRECT
NFS
ext4, O_DIRECT
ext4
XtreemFS
XtreemFS clienrel

Page 14

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

Conclusion

❚ Project runs until June 2010

❚ Next release: beginning of May

❚ Re-implemented client (Linux, Win, OS X)

❚ Client-side metadata, data caching

❚ New binary protocol (based on ONC-RPC)

❚ Full SSL/X.509 support

❚ Read-only WAN replication

❚ Plugin policy modules for access control

http://www.xtreemfs.org/

Page 15

HIGH PERFORMANCE
COMPUTING

05/04/09

Minor Gordon

Thank you for your attention.

Questions?

	High Performance Computing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	PowerPoint-Präsentation

